看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于卷积神经网络的英文篇章情感量化方法 收藏
基于卷积神经网络的英文篇章情感量化方法

基于卷积神经网络的英文篇章情感量化方法

作     者:沈克琳 吉秉彧 李然 SHEN Kelin;JI Bingyu;LI Ran

作者机构:信阳农林学院外国语学院河南信阳464000 信阳农林学院信息工程学院河南信阳464000 信阳师范学院计算机与信息技术学院/河南省教育大数据分析与应用重点实验室河南信阳464000 

基  金:国家自然科学基金项目(31872704,61601396) 河南省高校科技创新团队支持计划(19IRTSTHN014) 

出 版 物:《信阳师范学院学报(自然科学版)》 (Journal of Xinyang Normal University(Natural Science Edition))

年 卷 期:2021年第34卷第1期

页      码:130-137页

摘      要:提出利用卷积神经网络(CNN)预测英文单词情感极性,并利用英文单词情感极性设计量化篇章情感倾向的方法.首先,利用fastText技术训练词嵌入模型,将英文单词转化为定长、稠密的词向量;接着,以词向量作为输入,构造一维CNN模型,并设计出多种具有不同深度的架构;最后,利用CNN预测模型计算篇章中所含英文单词的平均情感极性作为篇章情感倾向的量化分值.实验结果表明:相比于传统的机器学习模型,提出的CNN预测模型能够提升英文单词情感预测精度,所设计的篇章情感量化方法,也与主观判决情感色彩有较好的一致性.

主 题 词:情感分析 机器学习 卷积神经网络 词嵌入 情感量化 

学科分类:081203[081203] 08[工学] 0835[0835] 0812[工学-测绘类] 

D O I:10.3969/j.issn.1003-0972.2021.01.022

馆 藏 号:203101542...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分