看过本文的还看了

相关文献

该作者的其他文献

文献详情 >组合动作空间深度强化学习的人群疏散引导方法 收藏
组合动作空间深度强化学习的人群疏散引导方法

组合动作空间深度强化学习的人群疏散引导方法

作     者:薛怡然 吴锐 刘家锋 XUE Yiran;WU Rui;LIU Jiafeng

作者机构:模式识别与智能系统研究中心(哈尔滨工业大学)哈尔滨150001 

基  金:国家自然科学基金(61672190) 

出 版 物:《哈尔滨工业大学学报》 (Journal of Harbin Institute of Technology)

年 卷 期:2021年第53卷第8期

页      码:29-38页

摘      要:人群疏散引导系统可在建筑物内发生灾害时有效保护生命安全,减少人员财产损失。针对现有人群疏散引导系统需要人工设计模型和输入参数,工作量大且容易造成误差的问题,本文提出了基于深度强化学习的端到端智能疏散引导方法,设计了基于社会力模型的强化学习智能体仿真交互环境。使智能体可以仅以场景图像为输入,通过与仿真环境的交互和试错自主学习场景模型,探索路径规划策略,直接输出动态引导标志信息,指引人群有效疏散。针对强化学习深度Q网络(DQN)算法在人群疏散问题中因为动作空间维度较高,导致神经网络复杂度指数增长的“维度灾难”现象,本文提出了将Q网络输出层按动作维度分组的组合动作空间DQN算法,显著降低了网络结构复杂度,提高了系统在多个引导标志复杂场景中的实用性。在不同场景的仿真实验表明本文方法在逃生时间指标上优于静态引导方法,达到人工构造模型方法的相同水平。说明本文方法可以有效引导人群,提高疏散效率,同时降低人工构造模型的工作量并减小人为误差。

主 题 词:神经网络 强化学习 疏散引导 人群仿真 深度Q网络 

学科分类:12[管理学] 1201[管理学-管理科学与工程类] 081104[081104] 08[工学] 0835[0835] 0811[工学-水利类] 0812[工学-测绘类] 

核心收录:

D O I:10.11918/202101029

馆 藏 号:203104681...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分