看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于双生成器生成对抗网络的电力系统暂态稳定评估方法 收藏
基于双生成器生成对抗网络的电力系统暂态稳定评估方法

基于双生成器生成对抗网络的电力系统暂态稳定评估方法

作     者:杨东升 吉明佳 周博文 卜思齐 胡博 YANG Dongsheng;JI Mingjia;ZHOU Bowen;BU Siqi;HU Bo

作者机构:东北大学信息科学与工程学院辽宁省沈阳市110819 香港理工大学电机工程系香港九龙区999077 国网辽宁省电力有限公司辽宁省沈阳市110004 

基  金:国家自然科学基金资助项目(U1908217) 辽宁省“兴辽英才计划”资助项目(XLYC1902055,XLYC1902090) 中央高校基本科研项目(N180415004) 

出 版 物:《电网技术》 (Power System Technology)

年 卷 期:2021年第45卷第8期

页      码:2934-2944页

摘      要:当前采用深度学习网络实现电力系统暂态稳定评估,由于样本多样性不足,抗干扰性差等问题导致评估算法的分类性能受到很大的影响。针对上述问题提出了一种基于双生成器生成对抗网络(double generator LSTM-generative adversarial network,DGL-GAN)的暂态稳定评估方法。DGL-GAN中批量样本生成器与判别器构成对抗网络,通过交替训练学习暂态数据的分布特性,批量生成符合真实分布的新样本,解决样本多样性不足的问题;修复生成器由LSTM自编码器构成,其作用不但可以去除电力系统暂态数据中的噪声而且可以补偿仿真或量测缺失的片段,解决评估算法抗干扰能力差的问题。此外,提出的基于多层LSTM的网络结构设计可以进一步提高模型对暂态时序数据的特征提取能力。IEEE-39节点系统仿真结果表明:所提方法能够有效增强样本多样性,显著提升暂态稳定评估性能,同时还使得模型具有良好的抗干扰能力。

主 题 词:电力系统 暂态稳定评估 生成对抗网络 长短期记忆网络 

学科分类:080802[080802] 0808[工学-自动化类] 08[工学] 

核心收录:

D O I:10.13335/j.1000-3673.pst.2020.1066

馆 藏 号:203104703...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分