看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于一维卷积神经网络多任务学习的电能质量扰动识别方法 收藏
基于一维卷积神经网络多任务学习的电能质量扰动识别方法

基于一维卷积神经网络多任务学习的电能质量扰动识别方法

作     者:王伟 李开成 许立武 王梦昊 陈西亚 Wang Wei;Li Kaicheng;Xu Liwu;Wang Menghao;Chen Xiya

作者机构:华中科技大学电气与电子工程学院强电磁工程与新技术国家重点实验室武汉430074 

基  金:国家自然科学基金资助项目(51277080) 

出 版 物:《电测与仪表》 (Electrical Measurement & Instrumentation)

年 卷 期:2022年第59卷第3期

页      码:18-25页

摘      要:传统电能质量识别需要先用信号处理技术提取信号特征,且已有的多分类和多标签分类建模方式没有很好地反映多重扰动和单扰动之间的标签关联性,使得复合扰动分类的鲁棒性和抗噪性能不理想。针对这些问题,提出了一种基于多任务学习的一维卷积神经网络模型来识别各种电能质量扰动。此结构去除了传统方法的信号特征提取阶段,将扰动分类任务分成四个子任务,设计了相应的标签编码方案,最后输出一个10维标签向量完成多任务分类。仿真结果表明,该方法在不同信噪比时均具有较好的识别准确率,表明此模型具有较强的鲁棒性和抗噪声能力。同时,多任务分类相比One-hot多分类和多标签分类准确率更高,表明了该建模方式的有效性。

主 题 词:电能质量 扰动识别 深度学习 卷积神经网络 多任务学习 

学科分类:080802[080802] 0808[工学-自动化类] 08[工学] 

D O I:10.19753/j.issn1001-1390.2022.03.003

馆 藏 号:203108672...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分