看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Use of stochastic simulations to in... 收藏
Use of stochastic simulations to investigate the power and design of a whole genome association study using single nucleotide polymorphism arrays in farm animals

Use of stochastic simulations to investigate the power and design of a whole genome association study using single nucleotide polymorphism arrays in farm animals

作     者:AUVRAY Beno■t DODDS Ken G. 

作者机构:Applied Biotechnologies Group AgResearch Limited Invermay Research Centre Private Bag 50034 Mosgiel 9053 New Zealand 

基  金:Project supported by Ovita Limited  Dunedin  New Zealand 

出 版 物:《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 (浙江大学学报(英文版)B辑(生物医学与生物技术))

年 卷 期:2007年第8卷第11期

页      码:802-806页

摘      要:This paper presents a quick, easy to implement and versatile way of using stochastic simulations to investigate the power and design of using single nucleotide polymorphism (SNP) arrays for genome-wide association studies in farm animals. It illustrates the methodology by discussing a small example where 6 experimental designs are considered to analyse the same resource consisting of 6006 animals with pedigree and phenotypic records: (1) genotyping the 30 most widely used sires in the population and all of their progeny (515 animals in total), (2) genotyping the 100 most widely used sires in the population and all of their progeny (1102 animals in total), genotyping respectively (3) 515 and (4) 1102 animals selected randomly or genotyping respectively (5) 515 and (6) 1102 animals from the tails of the phenotypic distribution. Given the resource at hand, designs where the extreme animals are genotyped perform the best, followed by designs selecting animals at random. Designs where sires and their progeny are genotyped perform the worst, as even genotyping the 100 most widely used sires and their progeny is not as powerful of genotyping 515 extreme animals.

主 题 词:Simulation Association study Single nucleotide polymorphism (SNP) Power Quantitative trait loci (QTL) 

学科分类:0710[理学-生物科学类] 07[理学] 08[工学] 0905[农学-林学类] 09[农学] 071007[071007] 0836[0836] 090501[090501] 

核心收录:

D O I:10.1631/jzus.2007.B0802

馆 藏 号:203147722...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分