看过本文的还看了

相关文献

该作者的其他文献

文献详情 >面向民机可视导航的场面多尺度目标检测 收藏
面向民机可视导航的场面多尺度目标检测

面向民机可视导航的场面多尺度目标检测

作     者:章涛 张雪瑞 陈勇 钟科林 罗其俊 ZHANG Tao;ZHANG Xuerui;CHEN Yong;ZHONG Kelin;LUO Qijun

作者机构:中国民航大学、天津市智能信号与图像处理重点实验室天津300300 中国商飞上海飞机设计研究院上海201210 

基  金:国家重点研发计划(2022YFB3904303)资助项目 

出 版 物:《上海交通大学学报》 (Journal of Shanghai Jiaotong University)

年 卷 期:2024年第58卷第11期

页      码:1816-1825页

摘      要:民航飞机视觉辅助驾驶系统通过机载视觉传感器获取周边威胁态势信息,为飞行员提供辅助决策等信息,但是机载视觉传感器获取的机场场面威胁目标尺度变化大,且机载平台算力有限,现有的目标检测方法难以满足视觉辅助驾驶需求.针对上述问题,提出一种基于YOLOv5s算法的轻量化多尺度目标检测算法.首先,为增强场面小目标的特征表达,在加权双向特征金字塔网络(BIFPN)基础上,引入坐标注意力(CA)机制,设计CA-BIFPN特征融合网络,提高模型对多种尺度目标的学习能力.然后,设计GSConv解耦检测头,相互独立优化分类和回归目标,提高目标检测的精度.设计的跨级部分网络轻量化颈部模块可减少因引入解耦头增加的参数量,大幅提高整体网络的检测速度,实现场面目标实时检测.为了验证算法性能,构建机载视觉传感器滑行视角的实测数据、仿真数据组成的多尺度场面目标数据集.在该数据集上的实验结果表明,所提方法检测精度超过Faster R-CNN、SSD和YOLOv6、YOLOv7、YOLOX等经典多尺度目标检测算法,均值平均精度为71.40%,比YOLOv5s提高4.19个百分点;在机载计算仿真实验平台上,检测帧率达到71帧/s,满足实时检测要求.

主 题 词:YOLOv5s算法 民机可视导航 多尺度目标检测 特征融合网络 解耦检测头 

学科分类:1305[艺术学-设计学类] 13[艺术学] 081104[081104] 08[工学] 081105[081105] 0804[工学-材料学] 081101[081101] 0811[工学-水利类] 

核心收录:

D O I:10.16183/j.cnki.jsjtu.2024.206

馆 藏 号:203155649...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分