看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于LangChain与大模型的医疗问答系统研究 收藏
基于LangChain与大模型的医疗问答系统研究

基于LangChain与大模型的医疗问答系统研究

作     者:闵瑞 姜丹 王永刚 

作者机构:北京印刷学院信息工程学院北京 

基  金:北京印刷学院青年托举项目(20190124072) 北京印刷学院博士科研启动基金(27170124010) 

出 版 物:《计算机科学与应用》 (Computer Science and Application)

年 卷 期:2025年第15卷第2期

页      码:33-43页

摘      要:随着人工智能技术的迅猛发展,医疗问答系统已成为医疗信息检索和知识获取的重要工具。医疗领域涉及大量医学术语、复杂的疾病症状和治疗方案,传统查询方式难以高效、准确地满足医护人员和患者的信息需求。相比传统国内搜索引擎和原生开源大语言模型(LLMs),基于LangChain的大模型医疗问答系统能够提供更高质量的答案,显著提升医疗知识检索的效率和精准度。因此,本研究提出了一种基于LangChain与大模型的医疗智能问答系统,结合命名实体识别(NER)、图谱查询和对话分析等技术,构建了一个专注于医疗领域的知识图谱及其查询与生成模块。通过设计和优化Prompt提示词,Agent Tool提升了大模型生成更精准、高质量医疗问答的能力。研究结果表明,该系统在医疗问答任务中的表现优异,准确度、方案可行性和上下文相关性等指标显著优于传统LLMs和国内知名大模型。该系统通过与大规模医疗知识图谱的结合,能够深入理解复杂的医疗问题,并提供精准的回答,呈现可视化图谱展示图,更直观地给用户反馈,同时具备较高的数据安全性和可迁移性。Nowadays, with the rapid development of artificial intelligence technology, medical question answering system has become an important tool for medical information retrieval and knowledge acquisition. The medical field involves a large number of medical terms, complicated disease symptoms and treatment plans, and traditional inquiry methods are difficult to meet the information needs of medical staff and patients efficiently and accurately. Compared with traditional domestic search engines and native open source large language model (LLMs), LangChain-based large model medical question answering system can provide higher quality answers, significantly improving the efficiency and accuracy of medical knowledge retrieval. Therefore, this study proposed a medical intelligent question and answer system based on LangChain and large model, combined with named entity recognition (NER), graph query and dialogue analysis and other technologies, to build a knowledge graph and query and generation module focusing on the medical field. By designing and optimizing Prompt words, Agent Tool improves the ability of large models to generate more accurate and high-quality medical questions and answers. The results show that the system performs well in medical question answering tasks, with significant improvements in accuracy, feasibility, and context relevance are significantly better than traditional LLMs and well-known domestic large models. Through the combination of large-scale medical knowledge graph, the system can deeply understan

主 题 词:LangChain 知识图谱 大模型 

学科分类:08[工学] 0812[工学-测绘类] 

D O I:10.12677/csa.2025.152031

馆 藏 号:203157309...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分