看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于DVAE-WAFFN-GAN的不平衡样本的工业过程性能评估方法 收藏
基于DVAE-WAFFN-GAN的不平衡样本的工业过程性能评估方法

基于DVAE-WAFFN-GAN的不平衡样本的工业过程性能评估方法

作     者:付文峰 王振雷 王昕 FU Wenfeng;WANG Zhenlei;WANG Xin

作者机构:华东理工大学工业控制技术全国重点实验室上海200237 上海交通大学电工电子实验教学中心上海200240 

基  金:国家重点研发计划项目(2023YFB3307800) 国家自然科学基金重大项目(62394343) 国家自然科学基金面上项目(62273149) 中央高校基本科研业务费专项资金项目(222202417006) 

出 版 物:《化工学报》 (CIESC Journal)

年 卷 期:2025年第76卷第2期

页      码:769-786页

摘      要:在复杂工业生产过程中,为提高产品质量和生产效率,建立准确的工业运行状态性能等级评估模型十分重要。近年来,深度学习技术在这个领域中取得了一些进展。然而,实际工业生产过程中经常遇到数据样本不平衡情况,现有的深度学习性能评估方法在有限的少数样本中挖掘有价值的特征信息能力不佳,从而导致性能评估准确度低。为此,设计了一种双变分自编码器权重特征自适应融合的生成对抗网络(generative adversarial network based on weighted adaptive feature fusion network of double variational autoencoder,DVAE-WAFFN-GAN),对较少类别样本进行增强,提高了性能评估的准确度。该方法将VAE和GAN网络进行结合,首先用稀少类数据去预训练卷积变分自编码器(CNN-VAE)和长短时记忆变分自编码器(LSTM-VAE)提取真实数据的时空特征信息。训练生成网络时,随机噪声先输入到预训练的两个解码器中,解码器输出真实样本编码后的特征向量,再利用注意力机制设计权重自适应特征融合网络(WAFFN)对两个变分自编码器解码器输出的特征向量赋予不同权重进行融合,利用融合后的特征向量代替原始GAN中的随机噪声去生成数据,从而提高生成器生成数据的质量,提高性能评估的准确率。最后将该方法在样本不平衡的工业数据集上进行仿真实验。

主 题 词:深度学习 生成对抗网络 特征融合 注意力机制 工业过程性能评估 

学科分类:0810[工学-土木类] 08[工学] 080401[080401] 0804[工学-材料学] 080402[080402] 0835[0835] 081002[081002] 

核心收录:

D O I:10.11949/0438-1157.20240835

馆 藏 号:203157963...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分