看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Perturbation Analysis of Moore–Penr... 收藏
Perturbation Analysis of Moore–Penrose Quasi-linear Projection Generalized Inverse of Closed Linear Operators in Banach Spaces

Perturbation Analysis of Moore–Penrose Quasi-linear Projection Generalized Inverse of Closed Linear Operators in Banach Spaces

作     者:Zi WANG Bo Ying WU Yu Wen Wang 

作者机构:Department of Mathematics Harbin Institute of Technology Harbin 150001 P. R. China School of Mathematics Science Harbin Normal University Harbin 150025 P. R. China Yuan Yung Tseng Functional Analysis Research CenterSchool of Mathematics Science Harbin Normal University Harbin 150025 P. R. China 

基  金:Supported by National Nature Science Foundation of China(Grant No.11471091) 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2016年第32卷第6期

页      码:699-714页

摘      要:In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysis of bounded quasi-linear operators, we obtain an explicit perturbation theorem and error estimates for the Moore-Penrose bounded quasi-linear generalized inverse of closed linear operator under the T-bounded perturbation, which not only extend some known results on the perturbation of the oblique projection generalized inverse of closed linear operators, but also extend some known results on the perturbation of the Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces.

主 题 词:Banach space closed linear operator quasi-linear projection generalized inverse pertur- bation analysis Moore-Penrose 

学科分类:07[理学] 070104[070104] 0701[理学-数学类] 

核心收录:

D O I:10.1007/s10114-016-5542-z

馆 藏 号:203162772...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分