看过本文的还看了

相关文献

该作者的其他文献

文献详情 >面向大数据的并行分类混合算法研究 收藏
面向大数据的并行分类混合算法研究

面向大数据的并行分类混合算法研究

作     者:陈学斌 王师 董岩岩 CHEN Xue-bin;WANG Shi;DONG Yan-yan

作者机构:华北理工大学理学院河北唐山063009 

基  金:河北省科技基金支撑项目(13227407D) 

出 版 物:《微电子学与计算机》 (Microelectronics & Computer)

年 卷 期:2016年第33卷第4期

页      码:138-140页

摘      要:针对传统分类算法及技术在处理海量异构数据存在的系统性能拓展性低、计算量大、耗时长、分类效果不佳等问题,采用Map-Reduce与邻近分类算法融合设计适合大数据处理的并行分类混合算法,利用加权欧氏距离并行计算,达到提高海量数据分类效率、提高分类识别率和减小资源开销的目的,搭建Hadoop集群研究并在多个数据集上测试算法的可行性.实验结果表明,并行分类混合算法在海量数据分类中显现出较好的分类效果,是可行的海量数据分类模型.

主 题 词:大数据 Map-Reduce 算法融合 并行分类 

学科分类:08[工学] 081202[081202] 0812[工学-测绘类] 

D O I:10.19304/j.cnki.issn1000-7180.2016.04.030

馆 藏 号:203189181...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分