看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Settling basin design in a construc... 收藏
Settling basin design in a constructed wetland using TSS removal efficiency and hydraulic retention time

Settling basin design in a constructed wetland using TSS removal efficiency and hydraulic retention time

作     者:Soyoung Lee Marla C.Maniquiz-Redillas Lee-Hyung Kim 

作者机构:Water Environment Research Dept.National Institute of Environmental ResearchHwangyeong-ro 42Seo-guIncheon 404-708Korea Dept.of Civil & Envi.Eng'g.Kongju National University275 BudaedongSeobukguCheonanChungnamdo 331-717Korea 

基  金:supported by a grant (Code # 413-111-004) from Eco Innovation Project funded by Ministry of Environment of Korea government 

出 版 物:《Journal of Environmental Sciences》 (环境科学学报(英文版))

年 卷 期:2014年第26卷第9期

页      码:1791-1796页

摘      要:Using total suspended solid (TSS) removal efficiency and hydraulic retention time (HRT) as design parameters a design guideline of a settling basin in a constructed wetland (CW) was suggested; as well as management of sediment and particle in the settling basin. The CW was desiEned to treat the piggery wastewater effluent from a wastewater treatment plant during dry days and stonnwater runoff from the surrounding paved area during wet days. The first settling basin (FSB) in the CVV was theoretically designed with a total storage volume (TSV) of 453 ms and HRT of 5.5 hr. The amount of sediment and particles settled at the FSB was high due to the sedimentation and interception of plants in the CVV. Dredging of sediments was performed when the retention rate at the FSB decreased to approximately 80%. Findings showed that the mean flow rate was 21.8 m3/hr less than the designed flow rate of 82.8 m3/hr indicating that the FSB was oversize and operated with longer HRT (20.7 hr) compared to the design HRT. An empirical model to estimate the length of the settling basin in the CW was developed as a function of HRT and desired TSS removal efficiency. Using the minimum tolerable TSS removal efficiency of 30%, the length of the FSB was estimated to be 31.2 m with 11.8 hr HRT.

主 题 词:Constructed wetlandHydraulic retention timeParticle size distributionSettling basin designTSS removal efficiency 

学科分类:083002[083002] 0830[工学-生物工程类] 081504[081504] 08[工学] 0815[工学-矿业类] 

核心收录:

D O I:10.1016/j.jes.2014.07.002

馆 藏 号:203214188...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分