看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A microblog recommendation algorith... 收藏
A microblog recommendation algorithm based on social  tagging and a temporal interest evolution model

A microblog recommendation algorithm based on social tagging and a temporal interest evolution model

作     者:Zhen-ming YUAN Chi HUANG Xiao-yan SUN Xing-xing LI Dong-rong XU 

作者机构:School of Information Science and Engineering Hangzhou Normal University Hangzhou 311121 China MRI Unit & Epidemlology Dtviston Psychiatry Department Columbia University &New York State Psychiatric Institute New York 10032 USA 

基  金:Project supported by the Natural Science Foundation of Zhejiang Province  China (No. LZ12F02004)  the Program of Xinmiao Talent of Zhejiang Province  China (No. ZX13005002064)  and the National Natural Science Foundation of China (No. 81471734) 

出 版 物:《Frontiers of Information Technology & Electronic Engineering》 (信息与电子工程前沿(英文版))

年 卷 期:2015年第16卷第7期

页      码:532-540页

摘      要:Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.

主 题 词:Recommender system Collaborative filtering Social tagging Interest evolution model 

学科分类:12[管理学] 1201[管理学-管理科学与工程类] 08[工学] 081201[081201] 0812[工学-测绘类] 

核心收录:

D O I:10.1631/FITEE.1400368

馆 藏 号:203243562...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分