看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Design of Radial Basis Function Net... 收藏
Design of Radial Basis Function Network Using Adaptive Particle Swarm Optimization and Orthogonal Least Squares

Design of Radial Basis Function Network Using Adaptive Particle Swarm Optimization and Orthogonal Least Squares

作     者:Majid Moradi Zirkohi Mohammad Mehdi Fateh Ali Akbarzade 

作者机构:不详 

出 版 物:《Journal of Software Engineering and Applications》 (软件工程与应用(英文))

年 卷 期:2010年第3卷第7期

页      码:704-708页

摘      要:This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN.

主 题 词:Radial Basis Function Network Orthogonal Least Squares Algorithm Particle Swarm Optimization Mackey-Glass Chaotic Time-Series 

学科分类:07[理学] 0704[理学-天文学类] 

D O I:10.4236/jsea.2010.37080

馆 藏 号:203459328...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分