看过本文的还看了

相关文献

该作者的其他文献

文献详情 >面向表情识别的双通道卷积卷积神经网络 收藏
面向表情识别的双通道卷积卷积神经网络

面向表情识别的双通道卷积卷积神经网络

作     者:文元美 欧阳文 凌永权 WEN Yuan-mei;OUYANG Wen;LING Yong-quan

作者机构:广东工业大学信息工程学院 

基  金:国家自然科学基金项目(11871168、61671163) 广东省自然科学基金项目(2018A030310593) 广东工业大学2017年中央财政支持地方高校发展专项资金基金项目(201707) 

出 版 物:《计算机工程与设计》 (Computer Engineering and Design)

年 卷 期:2019年第40卷第7期

页      码:2046-2051页

摘      要:针对融合卷积神经网络学习到的低层次特征与高层次特征进行表情识别时参数过多的问题,提出面向表情识别任务的双通道卷积卷积神经网络。将池化层池化得到的特征图分为上下两路进行卷积,上路特征图采用1×1卷积核进行卷积得到低层次特征值,下路特征图输入到下一卷积层中学习高层次特征,将高层次特征与各层的低层次特征相融合后输入分类器进行分类。多个表情数据集实验结果表明,所提方法在保证识别精度的前提下有效减少了特征融合后的参数量。

主 题 词:表情识别 卷积神经网络 特征融合 双通道卷积 降维 

学科分类:1305[艺术学-设计学类] 13[艺术学] 081104[081104] 08[工学] 0804[工学-材料学] 081101[081101] 0811[工学-水利类] 

D O I:10.16208/j.issn1000-7024.2019.07.040

馆 藏 号:203692406...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分