看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于金字塔模型和各向异性滤波的分层自适应图像增强算法 收藏
基于金字塔模型和各向异性滤波的分层自适应图像增强算法

基于金字塔模型和各向异性滤波的分层自适应图像增强算法

作     者:白永强 孙腾 BAI Yong-qiang;SUN Teng

作者机构:北京理工大学自动化学院北京100081 北京理工大学北京市自动控制系统重点实验室北京100081 

基  金:北京市重点实验室资助项目(SYS100070417) 

出 版 物:《北京理工大学学报》 (Transactions of Beijing Institute of Technology)

年 卷 期:2012年第32卷第3期

页      码:263-267页

摘      要:结合拉普拉斯金字塔模型分解和前后双向异性扩散算法,提出一种分层自适应图像增强算法.该算法首先进行图像的高动态范围压缩,然后采用拉普拉斯金字塔模型方法将原始图像分解为不同尺度和频率下的带通图像序列.根据不同频率层图像的纹理方向特征,设计自适应参数法修改扩散传导方程的参数,在不同频率图像层上分别实现噪声平滑和边缘特征的增强.仿真实验通过与其它图像增强算法进行比较,评价结果表明,提出的分层自适应图像增强算法的处理效果良好,定量评价指标大幅改善.

主 题 词:图像增强 双边滤波 拉普拉斯金字塔 各向异性扩散 

学科分类:080202[080202] 08[工学] 0804[工学-材料学] 0802[工学-机械学] 

核心收录:

D O I:10.3969/j.issn.1001-0645.2012.03.010

馆 藏 号:203780764...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分