看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于度量方式不可知的少量样本的一次性面部识别 收藏
基于度量方式不可知的少量样本的一次性面部识别

基于度量方式不可知的少量样本的一次性面部识别

作     者:李新叶 龙慎鹏 

作者机构:华北电力大学(保定)电子与通信工程系 

出 版 物:《电脑编程技巧与维护》 (Computer Programming Skills & Maintenance)

年 卷 期:2020年第1期

页      码:3-5,34页

摘      要:从少量样本中学习仍然是机器学习的关键挑战。尽管最近在视觉和语言等重要领域取得了进展,但标准监督的深度学习范式并没有为从小样本中快速学习新概念提供令人满意的解决方案。在此研究训练具有少量训练数据的人脸识别模型的问题。借鉴了一个概念上简单、灵活和通用的框架,用于少样本人脸识别,只给出几个例子,分类器学会识别新类。在元学习期间,它学习深度距离度量以比较图像的相似性,每个图像被设计为模拟少样本学习设置。一旦经过训练,模型就能够通过计算查询图像与每个人脸图像的示例之间的关系分数来对新类别的人脸图像进行分类,而无需进一步更新网络。定义了关于少样本人脸识别(使用mini-PubFig数据集)一次性学习问题。

主 题 词:少样本学习 人脸识别 度量学习 元学习 

学科分类:12[管理学] 1201[管理学-管理科学与工程类] 081104[081104] 08[工学] 080203[080203] 0835[0835] 0802[工学-机械学] 0811[工学-水利类] 0812[工学-测绘类] 

D O I:10.16184/j.cnki.comprg.2020.01.001

馆 藏 号:203879939...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分