看过本文的还看了

相关文献

该作者的其他文献

文献详情 >克服小样本学习中灾难性遗忘方法研究 收藏
克服小样本学习中灾难性遗忘方法研究

克服小样本学习中灾难性遗忘方法研究

作     者:李文煜 帅仁俊 郭汉 Li Wenyu;Shuai Renjun;Guo Han

作者机构:南京工业大学计算机科学与技术学院江苏南京211816 

基  金:江苏省电子商务重点实验室(南京财经大学)项目(JSEB2017002) 

出 版 物:《计算机应用与软件》 (Computer Applications and Software)

年 卷 期:2020年第37卷第7期

页      码:136-141,147页

摘      要:针对小样本学习在识别新类别时会出现灾难性遗忘的问题,提出一种小样本学习中克服灾难性遗忘的方法。结合卷积神经网络识别模型提取图片特征,引用注意力机制设计分类权重生成器,使新类权重的生成基于基类权重。通过基于皮尔森相似度的识别模型计算新类特征与基类图片分类权重之间的相似度,判断新类图像的类别。在三种数据集进行实验,结果表明:该方法使小样本图像分类的精度得到了一定程度的提升,同时不会牺牲基类的识别准确度,克服了灾难性遗忘。

主 题 词:灾难性遗忘 小样本学习 注意力机制 分类权重 皮尔森相似度 

学科分类:081203[081203] 08[工学] 0835[0835] 0812[工学-测绘类] 

D O I:10.3969/j.issn.1000-386x.2020.07.022

馆 藏 号:203950508...

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分