T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:基于脑电(Electroencephalogram,EEG)的谎言检测技术依赖于对事件相关电位(Event-related potential,ERP)的有效解码,当前主要采用手工设计特征进行脑电分析.近年来,单试次脑电分类方法取得了长足进步,其中端到端的脑电分类方法能够实现对脑电的自动特征提取和分类,但在谎言检测中缺乏研究和应用,同时存在无法在测谎场景下直接应用的问题.本研究设计基于复合反应范式(Complex trial protocol,CTP)进行自我面孔信息识别任务的实验,采集了18名被试的脑电数据.研究了不同端到端的单试次ERP分类方法在谎言检测中的应用,同时针对单试次脑电解码方法无法直接实际应用的问题,提出了一种类自举算法.算法基于数据分布假设,通过对比各类刺激图像被视为探针刺激时所训练模型的性能,来推断真正的探针刺激.实验结果表明,在基于自我面孔信息的CTP的谎言预测中,所提出的类自举法性能优于传统探针预测方法,在仅使用少量脑电数据情况下,可实现准确的谎言预测.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn