T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:综述了面向6G的联邦边缘学习技术,能够充分利用分布在网络边缘的丰富数据使之服务于人工智能模型训练,以联邦边缘学习为代表的边缘智能技术应运而生,其中无线资源管理策略将以最优化任务学习性能为导向,例如优化模型训练时间、学习收敛性等,从而实现从通信导向到任务导向的设计范式变革。首先,概述了联邦边缘学习基本概念、典型应用场景及其在无线资源管理中的关键问题。然后,以联邦边缘学习中带宽资源分配和用户调度策略为典型的资源管理案例,深入阐述了基于任务导向的设计范式思想。最后,对联邦边缘学习的未来潜在研究方向进行了展望,包括与无线空中计算、通信感知一体化等全新技术的融合赋能。
摘要:针对多场景多设备与单场景多视角两类代表性的协作感知场景,提出了针对性的基于联邦学习的协作感知学习框架,并针对在无线通信场景下,通信与感知资源有限以及信道随机性等挑战,提出了相对应的资源分配方案与用户调度策略。保证了提出的学习算法能够在无线网络下实现高质量且稳定的协同感知,并通过仿真验证并分析了算法的正确性与有效性。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn