T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:为了提高GCr15轴承钢强韧性,设计了一种GCr15轴承钢双淬火工艺,与常规热处理工艺对比研究发现,采用双淬火工艺处理的GCr15轴承抗拉强度从2139.5 MPa提高到2654.5 MPa,旋转弯曲中值疲劳强度从1000 MPa提高到1029 MPa。对基体组织定性表征发现,2种热处理后的组织均为针状马氏体,通过定量计算发现,残余奥氏体体积分数从8.33%增加至11.26%,同时位错密度由2.45×10^(12)/cm~2增加至3.09×10^(12)/cm~2。利用扫描电镜对旋弯断口夹杂物成分分析发现,双淬火处理工艺不改变夹杂物的尺寸、数量和类型。通过微观组织结构与力学性能关系分析发现,双淬火导致抗拉强度、伸长率和高周疲劳强度提升主要归因于缓慢的残余奥氏体TRIP效应以及细晶化带来的变形均匀性。通过微观组织结构与疲劳性能关系分析,发现双淬火引起的低周次疲劳强度降低和高周次疲劳强度提高主要归因于不同疲劳周次下残余奥氏体转变速率不同。快速奥氏体转变导致低周次应力集中增大而疲劳强度降低。相反,高周次的奥氏体TRIP缓解了应力集中,提高了疲劳强度。
摘要:高氮不锈轴承钢作为第三代轴承钢材料,被广泛应用于航天飞机燃料泵轴承、飞机发动机主轴轴承等领域,现已经成为航空航天关键基础材料。而国内关于高氮不锈轴承钢滚动接触疲劳性能研究几乎空白,因此对加压电渣冶炼工艺制备的高氮不锈轴承钢采用不同回火温度热处理,进行力学性能测试、微观结构表征和滚动接触疲劳性能测试。结果表明,试验钢1030℃淬火+180℃回火热处理工艺抗拉强度为1899.7 MPa、硬度为60.7HRC,500℃回火后硬度与180℃相当,抗拉强度提升至2213.5 MPa;通过对500℃高温回火试样基体表征,发现基体内纳米级Cr-N第二相析出是二次硬化现象产生的主要原因。180℃回火试样滚动接触疲劳寿命L10为1.67×10^(7),500℃回火试样L10为2.85×10^(7),提高了70%;通过对2组试样疲劳剥落坑深入表征,发现180℃回火试样次表层沿晶断裂是引起滚动接触疲劳失效的主要原因;结合基体残余应力测量结果分析,500℃高温回火残余拉应力为41 MPa,低于180℃回火的101 MPa。高温回火基体内析出的纳米级Cr-N第二相可以降低位错的运动能力,同时减弱了基体内部应力集中,使得滚道次表层沿晶断裂倾向减小,滚动接触疲劳寿命显著提高。对高氮不锈轴承钢不同回火工艺微观组织结构、滚动接触疲劳性能、裂纹萌生机制进行了深入研究分析,为高氮不锈轴承钢热处理工艺制定、抗疲劳机制研究以及材料研发应用提供试验与理论基础。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn