T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:针对显微系统具有高分辨率与高成像质量的要求,其系统一般片数多装调困难,导致系统存在实际的装调效果与设计结果之间难以匹配的问题,因此提出了小像差互补的方法对系统进行设计。首先,建立基于小像差互补设计方法的数学模型,然后将其编写为可用于控制ZEMAX软件的宏语言(ZPL),再对光学系统进行优化设计。最后以一红外显微光学系统为例,对比小像差互补设计方法使用前后的优化结果,对小像差互补设计方法进行了验证,发现应用小像差互补设计方法的光学系统,总体成像质量具有突出优势,各元件的公差敏感性明显降低,整体光学系统的稳定性得到了有效提高。
摘要:为在复杂环境下实现目标的高精度、高分辨率探测与识别,基于红外双波段成像光谱仪的准确性高、虚警率低的优点,针对像元大小为25μm、阵列尺寸为384 pixel×288 pixel的制冷型双色量子阱红外探测器,设计了一款红外双波段共像面成像光谱仪。由于红外双波段系统的谱段较宽,色差难校正,所以前置望远物镜采用的是离轴两反系统。光谱分光系统采用谱线弯曲较小的Offner凸面光栅结构。为了获得更高的光谱分辨率和衍射效率,同时为了更有效地利用探测器,对光栅的双衍射级次进行设计,中波波段和长波波段分别采用二级衍射和一级衍射进行分光。为了减小到达探测器的杂散光对成像结果的影响,设计了二次成像中继系统,用以保证系统实现100%的冷光阑效率。为了更好地进行光瞳衔接匹配,各部分系统均实现了远心性。最终系统的成像结果显示,点列斑均方根半径小于一个像元,调制传递函数接近衍射极限,没有明显的冷反射现象,成像质量较好,符合红外双波段成像光谱仪的设计要求。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn