T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:为提升车门的轻量化水平与性能,采用“材料—结构—性能”一体化集成方法设计铸铝一体化车门。基于构建的铸铝一体化车门有限元模型,以车门的厚度为设计变量,采用径向基函数(radial basis function,RBF)神经网络近似模型和二阶响应面近似模型并分别结合二代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)、多目标粒子群优化(multi-objective particle swarm optimization,MOPSO)算法以及多岛遗传算法(multi-island genetic algorithm,MIGA)对车门的下沉刚度工况位移、上扭转刚度工况位移、下扭转刚度工况位移、一阶弯曲模态频率、一阶扭转模态频率和质量进行确定性优化设计。在此基础上,考虑材料及加工制造等不确定性因素,对确定性优化解的质量水平进行6Sigma可靠性分析与优化。结果表明,二阶响应面近似模型与MOPSO算法的优化组合方案实现了车门的最佳轻量化,RBF神经网络近似模型与MOPSO算法的优化组合方案实现了车门下沉刚度工况位移的最小化。上述2种组合分别实现了车门轻量化与安全化的设计目标。研究结果可为车身零部件的优化设计提供参考。
摘要:为保证汽车行车安全,前舱盖需满足刚度、模态和行人保护等要求。针对汽车前舱盖的轻量化设计需求,建立了铸铝一体化前舱盖有限元模型,分析了前舱盖的刚度、模态和行人保护性能,构建了RBF-Kriging混合近似模型并联合存档微遗传算法(archive based micro genetic algorithm,AMGA)对前舱盖进行多目标优化。针对多目标优化产生的Pareto解集,提出一种基于模糊层次分析-逼近理想解排序(fuzzy analytic hierarchy process-technique for order preference by similarity to ideal solution,FAHP-TOPSIS)法对Pareto非劣解进行综合性能排名,主客观相结合地选择出最优方案。结果表明,在满足性能要求的前提下,最优一体化前舱盖质量降低了32.14%,轻量化效果显著。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn