T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:随着计算机技术的普及和发展,工作流以办公自动化的形式被应用到社会各个行业中,近几年,在医疗领域,工作流概念的医疗设备维修管理子系统也在设计和使用中,对医疗设备的维修和管理有很大的帮助。本论文基于工作流概念,对其医疗设备维修管理子系统的设计和实现进行分析和研究。
摘要:目的探讨多体位在重度肾积水患者行静脉尿路造影检查时的临床意义。方法回顾性分析50例重度肾积水患者在静脉尿路造影检查中采用的检查体位。结果45例检查中使用了2种或以上的检查体位才得到较为满意的造影显示,5例显影效果较差,皆因为患者不能配合或由于其他原因未能采取其他辅助体位而导致。结论多体位检查在重度肾积水患者静脉尿路造影中具有重要的临床意义,个体化设计检查体位是其静脉尿路造影成功的关键。
摘要:根据参加高速公路通道设计的经验与体会 。
摘要:注浆加固效果的定量计算是实现科学注浆设计的前提,为此,针对软弱地层劈裂–压密注浆模式提出一个可实现注浆加固效果定量计算的思路,在分析劈裂–压密注浆加固机制的基础上,建立注浆效果简化计算物理模型,提出注浆加固体整体性能的定量计算方法,研究劈裂–压密注浆加固体性能的各向异性及空间分布特征,并分析相关因素对注浆加固效果的影响。研究结果表明:劈裂–压密注浆加固体性能各向异性显著,平行浆脉方向的抗变形能力要优于垂直浆脉方向,但抗剪性能及抗渗性能均弱于后者,平行浆脉方向的黏聚力与渗透系数是劈裂–压密注浆效果的2个短板;压缩模量、黏聚力沿浆脉扩展方向基本呈线性衰减趋势;注浆加固体性能与注浆压力正相关,而与注浆孔间距负相关,单孔注浆量的增加会使得注浆孔附近区域内的注浆加固体性能趋于均匀。最后,结合青岛地铁2号线砂层注浆工程实例,验证了注浆加固效果定量计算方法的有效性,以期为地下工程注浆定量化研究提供一定借鉴。
摘要:对空间刚柔耦合并联机构系统的固有频率特性进行分析。建立一种空间有限元梁单元新模型,基于有限元法和Lagrange方程导出有限元梁单元的运动微分方程。通过分析动平台运动参量与运动支链间的运动关系,得到刚柔耦合并联机构系统的运动学约束条件,并由Newton-Euler方程得到系统动平台的动力学模型。根据系统的运动学约束条件和动平台的动力学模型,经过各个单元运动微分方程的有机组装,导出刚柔耦合并联机构系统的整体动力学方程。在此基础上,通过算例3-RRS刚柔耦合并联机构系统的频率特性分析,总结空间刚柔耦合并联机构系统的固有频率与机构基本参量之间的内在规律。结果显示,刚柔耦合并联机构系统的结构尺寸、支链中杆件的截面参量和材料参量等对系统的固有频率都有显著影响。研究对进一步研究刚柔耦合并联机构的动态特性和机构优化设计具有重要的指导意义。
摘要:柔顺机构是利用自身柔性构件的弹性变形来转换力、运动或能量的一种新型机构。经过20多年的发展,柔顺机构已成为现代机构学的一个重要分支,并在许多领域得到了应用。根据掌握的大量文献资料,对柔顺机构的静力学、运动学、动力学、优化设计和应用等几个领域的主要研究成果进行了系统总结,分析了柔顺机构存在的问题,并对其发展方向进行了展望。
摘要:劈裂–压密模式是砂层注浆扩散过程的主要模式之一。为研究砂层劈裂–压密注浆扩散过程,研发了一套可视化注浆模拟试验系统,该系统由模拟试验架、地应力加载模块、动态监测模块以及注浆控制模块4部分构成,可实现劈裂–压密注浆扩散过程的可视化模拟。以青岛地区含黏性土砂层为典型被注介质,开展了砂层劈裂–压密注浆模拟试验,揭示了注浆扩散过程中劈裂通道形态、注浆压力、应力场以及位移场随时间变化规律,获得了试验条件下的砂层劈裂–压密注浆影响范围。研究结果表明:砂层注浆起裂方向与劈裂通道扩展方向均与大主应力方向一致,浆脉厚度在浆脉扩展方向上存在明显衰减;注浆会引起与劈裂通道垂直方向的应力增加,且该应力沿劈裂通道扩展方向衰减,但注浆对平行劈裂通道扩展方向的应力没有显著影响;劈裂–压密注浆对劈裂通道两侧砂层的影响范围非常有限(20~40cm)。最后从单孔注浆量、钻孔布置方面对砂层劈裂–压密注浆设计方法提出了改进建议。
摘要:劈裂-压密注浆模式是砂层注浆工程中的重要模式,砂层自身的压密特性对劈裂-压密注浆扩散过程具有显著影响,基于此,以山东青岛地区含黏性土砂层为典型砂层介质,通过侧限压缩试验测试了不同条件下的砂层压缩变形曲线,测试压力范围0~2 MPa,砂层黏性土含量10%~50%,砂层初始含水量12%~28%,分析了黏性土含量及初始含水率对砂层压密过程的影响,从是否形成砂骨架的角度揭示了砂层压密变形机理。采用二次抛物线模型来拟合砂层侧限压缩过程应力-应变数据,建立了可描述砂层非线性压密过程的数学模型,模型参数可通过初始压缩模量及2 MPa下的特征应变量确定。在此基础上,认为劈裂-压密注浆过程中劈裂通道两侧砂层的压密过程近似符合侧限条件,分析了黏性土含量对砂层劈裂-压密注浆扩散过程的影响。研究结果表明:黏性土含量是影响砂层压密特性的主控因素,当黏性土含量低于25%左右时,砂层压缩过程中会形成砂骨架,砂层整体可压缩性较差,反之,不会形成砂骨架,砂层整体可压缩性较好;存在最优初始含水率(20%左右),当砂层初始含水率由最优初始含水率增加或者减少时,相同压力条件下砂层压缩量均会减小;砂层压密过程数学模型曲线与试验数据较为一致,所创建的数学模型可较好地描述砂层压密过程;相同注浆时间条件下,黏性土含量与注浆扩散过程中的劈裂通道开度正相关,而与浆液扩散半径及注浆压力负相关;在相同注浆终压条件下,黏性土含量与浆液扩散半径正相关。在砂层劈裂-压密注浆设计中应充分考虑砂层压密特性对注浆扩散过程的影响。
摘要:多孔介质注浆的扩散方式以渗透注浆为主,传统的多孔介质渗透注浆往往忽略了浆液渗透过程中的扩散路径,导致理论结果与实际偏差较大。基于对多孔介质浆液渗透过程中扩散路径分析,根据浆液扩散运动方程,建立了考虑浆液扩散路径的多孔介质渗透注浆模型,设计了一套多孔介质渗透注浆扩散模拟实验装置,并采用常规注浆材料-水泥浆液,获得不同被注介质渗透率及不同注浆速率下的注浆压力的时空变化规律。研究结果表明:考虑浆液扩散路径的多孔介质浆液渗透注浆模型计算值为试验值的1.1-1.3倍,计算值与试验值误差在允许的范围之内,所建模型可较好的描述了浆液渗透扩散过程;不考虑浆液扩散路径的多孔介质渗透注浆模型计算值为试验值的1.8-3.2倍,显著高估了注浆扩散过程的浆液压力。研究成果成功用于青岛地铁砂层治理工程,因此,在多孔介质渗透注浆扩散设计中应充分考虑浆液扩散路径。
摘要:速凝类浆液的黏度时变性及双液注浆方式导致浆液黏度空间分布不均匀,在渗透注浆理论模型中应当考虑浆液黏度空间分布不均匀性的影响。基于黏度时变性宾汉流体本构模型,引入了描述渗流过程的均匀毛管组模型,建立了恒定注浆速率条件下考虑浆液黏度时空变化的一维渗透注浆扩散模型。设计了一维可视化渗透注浆扩散模拟试验系统,获得了不同介质渗透率及不同注浆速率条件下水泥-水玻璃浆液(C-S)注浆压力随时间变化规律。研究结果表明:考虑浆液黏度空间分布不均匀性时,孔口注浆终压计算值为试验值的1.2~1.4倍,浆液扩散距离计算值为试验测量值的0.9~1.1倍,计算值与试验值的误差在可接受范围内,所创建的理论模型可较好地描述速凝浆液一维渗透注浆扩散过程。不考虑浆液黏度空间分布不均匀性时,孔口注浆终压计算值为试验值的3.5~4.1倍,浆液扩散距离计算值为试验测量值的0.5~0.7倍,显著高估了注浆压力、低估了浆液扩散范围。因此,在注浆设计中应充分考虑速凝浆液黏度空间分布不均匀性。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn