T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:二位置对准能够提高捷联惯导系统初始对准精度的原因有惯性器件常值误差的自补偿和改善系统可观测性两方面。首先,为了研究单轴旋转惯导系统的误差补偿机理,建立了系统误差模型,引入了等效惯性器件常值误差,然后,从等效陀螺常值漂移的角度出发,推导了最优二位置对准方案,代入误差传播方程可知,该方案能够抑制水平等效陀螺常值漂移,进而减小航向角误差;最后,建立了卡尔曼滤波模型,采用奇异值分解法证实了二位置对准能够改善系统可观测性,并开展了相关试验。试验结果表明,该方案可使初始对准精度达到36.441 4″(1σ)。
摘要:为了简化标定设备,降低标定成本,该文研究了利用双轴位置转台进行光纤陀螺惯组混合标定的可行性。通过分析加速度计和陀螺的标定原理,提出了一种快速六位置标定方案。利用地球重力加速度和自转角速度对加速度计和陀螺进行误差激励,完成标定。首先建立了标定模型,其次设计了位置编排方案,最后进行了实验验证。实验结果表明,快速六位置法能实现加速度计和陀螺误差参数的快速标定,其中标度因数的标定精度与传统方法基本一致,安装误差和常值漂移的精度相对于传统标定方法有所降低,但满足低精度的光纤陀螺惯组的使用要求;同时,与传统标定方法相比,其标定时间由4.5h减少至2h。
摘要:惯导系统的旋转调制技术实质上是一种误差自补偿技术。为了研究单轴旋转惯导系统的误差补偿机理,从四元数微分方程的角度重新推导了旋转惯导系统的姿态误差模型,能够与常用的方向余弦法推导的模型相互印证。建立了具有一般意义的系统误差模型和静基座误差传播方程,并分析了惯性器件误差量的调制形式,为设计转位方案提供了依据。针对单轴连续旋转方案中陀螺常值漂移、标度因数误差和安装误差对导航误差的影响进行了仿真。理论分析与仿真结果均表明,惯性测量单元绕方位轴的连续旋转可以有效抑制导航误差。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn