T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:针对无人机影像目标跟踪过程中常出现的目标方向变化、目标遮挡变化、样本多样性不足等问题,提出了一种基于形态自适应网络的无人机航空影像目标跟踪算法。首先使用基于数据驱动的方法对数据集进行扩增,添加了遮挡样本和多旋转角度样本,提高样本多样性;提出的形态自适应网络模型通过旋转不变约束改进深度置信网络,提取强表征能力的深度特征,使得模型能够自动适应目标形态变化,利用深度特征变换算法获取待检测目标的预定位区域,采用基于Q学习算法的搜索机制对目标进行自适应精准定位,使用深度森林分类器提取跟踪目标的类别信息,得到高精度的目标跟踪结果。在多个数据集上进行了对比实验,实验结果表明该算法能够达到较高的跟踪精度,可以适应目标旋转、目标遮挡等形态变化情况,具有较好的准确性和鲁棒性。
摘要:针对四旋翼无人机执行器常见故障,提出一种基于自适应技术和观测器的鲁棒故障检测和估计(FDE)方法。在故障检测阶段,设计非线性诊断观测器,通过解析函数推导出阈值,确保所提检测方法的鲁棒性,并对所设计的观测器和残差评估函数进行证明。在故障估计阶段,提出基于切换ρ-修正的自适应律来准确估计检测到故障的方案。该方案不仅能够同时估计系统状态和残差信号,而且能估计未知故障的特征和大小。通过线性矩阵不等式进行设计参数的计算。利用2种故障场景分别进行仿真验证,同时在4种情况下讨论所提方法的有效性。基于四旋翼无人机硬件在环实验台验证了所提方法的可行性。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn