T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:基于密度泛函理论的第一性原理,建立Al_2O_3和RuO_2晶胞模型,计算了Ru Al合金氧化物Al_2O_3和RuO_2的氧化能,结果显示:Al_2O_3的氧化能为–11.43 e V,RuO_2的氧化能为–2.28 e V,Al_2O_3比RuO_2的结构稳定性更好。通过态密度、Bander电荷密度等分析,发现W合金化提高RuAl抗氧化性能的根本原因是:由于W对O的吸附作用,使W周围的Al-O和Ru-O成键强度降低,Al_2O_3和RuO_2的氧化能减少,从而降低其结构稳定性。其中,Al_2O_3结构稳定性降低更加明显。同时,W合金化可降低RuAl合金体系基体内部的Al_2O_3结构稳定性,阻碍生成内氧化过程的生成条件,减少了垂直于表层界面的Al_2O_3的形成,促使表层界面的横向方向上Al_2O_3氧化层的成长,形成连续性致密的Al_2O_3氧化层,提高Ru Al抗氧化性。
摘要:采用基于密度泛函理论的第一性原理方法,计算了LiAlH4-Cl体系的晶体与电子结构及稳定性能。计算生成焓发现,Cl-均可替代LiAlH4晶体结构中不同位置的H原子、[AlH4]单元体及占间隙位,其占位难易程度从易到难依次为:间隙位>H2位>H4位>H3位>H1位>[AlH4]单元体。H原子解离能的计算发现:在Cl-替代[AlH4]单元和占据间隙位时,LiAlH4体系的结构稳定性变差,对应体系的放氢能力提高。其中,Cl-占据间隙位时,其对应体系放氢能力最强。费米能级附近能隙ΔEH-L值变小,对应体系的结构稳定性降低,是提高LiAlH4体系放氢能力的根本原因。
摘要:采用基于密度泛函理论的第一性原理赝势平面波方法,研究了稀土元素M(M=La,Ce,Pr)对LiNH2解氢性能的影响。计算了合金形成热、H原子解离能和电子态密度,分析了结构稳定性。结果表明:稀土元素M替代LiNH2中部分Li时,费米能级附近能隙ΔEH-L变窄,使得N-H键间共价键特性减弱,系统结构稳定性降低,提高了LiNH2的解氢能力。
摘要:采用基于密度泛函理论的第一原理赝势平面波方法,计算了Co、Ni掺杂LiBH4体系的晶体与电子结构及解氢性能的影响。负合金形成热与H原子解离能的计算发现:金属元素Co、Ni在LiBH4中少量置换固溶时,体系结构稳定性发生变化,合金化增强了体系解氢能力,其中Co提高LiBH4体系解氢效果较好。电子态密度与电子密度分析发现:合金化提高LiBH4解氢能力的主要原因是Co、Ni导致LiBH4体系Fermi能级附近能隙减小,BH键的键长增长和重叠布局数减小及Li与BH之间的成键作用减弱。
摘要:采用基于密度泛函理论的第一原理赝势平面波方法,计算了Co和Ni对LiNH2体系的晶体、电子结构及解氢性能的影响。负合金形成热与H原子解离能的计算结果表明:金属元素Co、Ni在LiNH2中少量置换固溶时,体系结构稳定性发生变化,合金化增强了体系的解氢能力,其中Ni提高LiNH2体系解氢效果较好。电子态密度(DOS)与电子密度分析结果表明:合金化提高LiNH2解氢能力的主要原因是合金化元素Co、Ni导致LiNH2体系Fermi能级附近能隙值发生变化以及Li与N-H之间的成键作用减弱。
摘要:基于密度泛函理论的第一性原理,探讨了稀土金属元素RE(RE=Y,La,Ce,Lu)合金化对TiAl力学性能的影响。通过计算TiAl合金形成能发现:富Al(Ti8Al7Al)晶体结构比富Ti(Ti_7Al_8Ti)晶体结构更稳定,稀土金属元素RE合金化TiAl合金晶体结构的能量比合金化前有所下降,合金化可提高体系的结构稳定性。通过态密度、Bander电荷密度等分析,发现稀土金属元素RE合金化提高TiAl力学性能的根本原因是:合金化元素RE的电子与周围的Ti原子产生了电荷转移,导致Ti原子失电子数增加,使Ti-Al之间离子性相互作用减弱,共价性相互作用增强,增加TiAl的结构稳定性。同时,RE合金化可降低TiAl合金体系的脆性,增加体系的韧性,其中作用效果从大到小依次是:Y>Ce>La>Lu。
摘要:目的利用数字化设计结合3D打印技术研制个体化导板,初步探讨其应用于肩关节周围穿刺的可行性。方法选取需要行肩关节穿刺的9例患者(男4例,女5例;年龄39~62岁,平均56.8岁)的9侧关节(左侧3例,右侧6例;关节腔8例,肱骨近端1例)的薄层CT扫描数据在Mimics15.0软件中进行三维建模,把重建出来的模型导入Geomagic Studio和Geomagic Spark进行反求及正向设计,经3D打印技术制作出经皮导板,在体外模拟穿刺,明确进针方位后,对9例患者精准定位,穿刺活检,并采用C型臂X线机透视证实穿刺是否成功。结果经过穿刺前在患者骨骼模型及穿刺术的验证,应用数字化个性3D打印定制经皮导板对9患者导向下穿刺全部成功,进针方位均与术前设计的虚拟方案一致,无穿刺失败,未出现血管、神经损伤症状。结论数字化设计结合3D打印技术制作的个性定制经皮导板可以实现肩关节周围的精准穿刺。
摘要:原子级厚度的二维层状晶体材料具有丰富的物理特性,在新型微纳米器件领域展现出重要的发展潜力,相关的器件制备和性能研究也引起了广泛的关注.二维材料微纳米器件的制备需要经过二维材料的转移及金属电极的淀积等一系列过程.然而,在传统的制备流程中所涉及多步工艺需要用到诸多不同设备,如二维材料转移对准系统、电子束曝光系统,或是光刻系统,而且往往在一些步骤中涉及有机溶液处理,有可能会对样品带来一些不利的影响.本文设计展示了一种能够实现二维材料微纳米器件制备的多功能系统,该系统不仅可以实现二维材料的高效转移,而且可以直接进行金属电极的准确淀积,并且整个加工流程不涉及溶液处理,具有操作方便、效率高、样品污染少等优点.基于该多功能系统,我们成功制备出了MoS;场效应晶体管并对器件进行了光学表征和电学性能测试,展现了这一系统在高效制备微纳器件方面的潜力.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn