T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种针对电力设备缺陷文本的数据增强方法。首先,使用缺陷文本数据集微调预训练模型ERNIE(enhanced representation through knowledge integration),应用多阶段知识掩码策略将电气领域专业知识集成到对缺陷文本的动态编码中;然后在流形假设的基础上基于降噪自动编码器架构设计破坏函数和重建函数,遵循基于信息价值的掩码单元选择策略构建破坏函数,基于微调过的ERNIE构建重建函数,在“破坏-重建”过程中获得位于原始数据流形范围内的增强样本;其次对增强数据集基于影响函数和多样性度量进行数据选择,过滤掉数据质量差和重复度高的增强样本;最后通过多层训练框架,将增强数据应用于各种缺陷文本挖掘任务。算例基于真实设备巡检、检修记录构建了电力设备缺陷文本等级分类任务。结果表明,所提出的算法对缺陷文本挖掘效果有较大提升,并且可以广泛灵活地应用在多种电力设备缺陷文本挖掘任务中。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn