T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:Synthesis and characterization of enzyme mimics with characteristic stability and high catalytic efficiency is an interesting field for ***,with the development of nanoscience and introducing of Fe3O4 magnetic nanoparticles as peroxidase mimics in 2007,various nanomaterials such as noble metals,metal oxides,and carbon materials were introduced as enzyme mimics(nanozymes).Various nanomaterials exhibit peroxidaselike activity,hence,most of the nanozymes are peroxidase *** the nanozyme based sensors were previously classified,the classifications have been focused on the type of nanozyme ***,the nanozyme based sensors were classified as peroxidase,hydrolase,and urease mimic-based ***,heretofore,these sensors are not classified based on the detection mechanism and principles of system *** aim of this review is the focus on the peroxidase mimic based colorimetric sensors as the most common nanozyme-based sensors and their classification based on principles of sensor design and review of the detection mechanism of the current mimic peroxidase based ***,some current challenges and future developments in this field are discussed.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn