T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:Authors designed an obstacle radar transceiver for ISM band. This work is focused on rectangular microstrip transceiver integrated with innovative metamaterial structure at a height of 3.276 mm from the ground plane. Two rectangular microstrip transceiver is designed for transmitting and receiving purpose. This work is mainly focused on increasing the potential parameters of rectangular microstrip transceiver. RMT along with the proposed innovative metamaterial structure is designed to resonate at 2.259 GHz. Simulation results showed that the impedance bandwidth of the RMT is improved by 575%, return loss is reduced by 391% and efficiency is improved by 28% by incorporating the proposed innovative metamaterial structure. For verifying that the proposed innovative metamaterial structure possesses negative values of Permeability and Permittivity within the operating frequency range, Nicolson-Ross-Weir method (NRW) has been employed. An op-amp and comparator is used to compare the return loss of transmitting and receiving RMT. An indicator is used to indicate difference of return loss and power of transmitting and receiving rectangular microstrip transceiver. For all simulation purpose, computer simulation technology-microwave studio (CST-MWS) software has been used.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn