T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:One of the most serious conundrum facing the stope production in underground metalliferous mining is uneven break (UB: unplanned dilution and ore-loss). Although the UB has a huge economic fallout to the entire mining process, it is practically unavoidable due to the complex causing mechanism. In this study, the contribution of ten major UB causative parameters ha,; been scrutinised based on a published UB predicting artificial neuron network (ANN) model to put UB under the engineering management. Two typical ANN sensitivity analysis methods, i.e., connection weight algorithm (CWA) and profile method (PM) have been applied. As a result of CWA and PM applications, adjusted Qrate (AQ) revealed as the most influential parameter to UB with contribution of 22,40% in CWA and 20,48% in PM respectively. The findings of this study can be used as an important reference in stope design, production, and reconciliation stages on underground stoping mine.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn