T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:A simple and rapid analytical method for the simultaneous quantification of three commercial azo dyes—Tartrazine (TAR), Congo Red (CR), and Amido Black (AB) in water is presented. The simultaneous assessment of the individual concentration of an organic dye in mixtures using a spectrophotometric method is a difficult procedure in analytical chemistry, due to spectral overlapping. This drawback can be overcome if a multivariate calibration method such as Partial Least Squares Regression (PLSR) is used. This study presents a calibration model based on absorption spectra in the 300 - 650 nm range for a set of 20 different mixtures of dyes, followed by the prediction of the concentrations of dyes in 6 validation mixtures, randomly selected, using the PLSR method. Estimated limits of detection (LOD) were 0.106, 0.047 and 0.079 mg/L for TAR, CR, and AB, respectively, and limits of quantification (LOQ) were 0.355, 0.157 and 0.265 mg/L for TAR, CR, and AB, respectively. Quantitative determination of the three azo dyes was performed following optimized adsorption experiments onto chitosan beads of mixtures of TAR, CR and AB. Adsorption isotherm and kinetic studies were carried out, proving that the proposed PLSR method is rapid, accurate and reliable.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn