T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:The application of a digital modelling method that can faithfully take account of three-dimensional shape and inherent physical and chemical properties of each particulate component provides an essential tool in decommissioning design. This is useful in handling of high, medium and low level radioactive waste. The processes involve making decisions on where to cut existing plant components and then how to pack these components into boxes, which are then cemented and kept for long term storage as the level of radioactive declines with time. We illustrate the utility of the method and its ability to take data at plant scale (m-scale) and then deduce behaviours at sub millimetre scale in the packed containers. A variety of modelling approaches are used as a part of this approach including cutting algorithms, geometric and dynamic (distinct element) force models, and lattice Boltzmann methods. These methods are applicable to other complex particulate systems including simulation of waste, building recycling, heap leaching and related minerals processes. The paper introduces the basic concepts of this multi-scale and multi-model approach.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn