T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:Buoy is the structure which is floated on sea surface in order to indicate the presenting obstacle such as reef and shallow sea and to show the direction of sea route to ship during sailing. Generally, the conventional material of buoy is steel and it has some problems. Firstly this steel light buoy has safety risk in case of collision between ship and steel buoy. Secondly steel buoy revealed high corrosion environment of salted water and oxide and corrosion of steel can lead to marine pollution. Thirdly it needs too much maintain cost because of its heavy weight. In this study, in order to overcome these problems we changed the buoy material from conventional steel body to polyethylene body. Polymer buoy body was designed with module type part and it can reduce total weight up to 43.12%. To evaluate the strength of that part, the structure analysis simulation was carried out with respect to stress, displacement, and strain. Maximum stress was 1.667 × 107 N/m2 and it was 25% of yielding stress of base material. Maximum displacement and strain were 3.164 mm and 0.00433353 and they are too small value and in safe range with comparing to total length of body. The stability of polymer buoy body was compared with conventional buoy with respect to center of gravity, center of buoyancy, metacenter, oscillation period, and tilt angle by wind, tidal current, and wave. Every value was improved comparing conventional one and we can get more stable buoy. Therefore the new polymer buoy body could prove its safety and stability.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn