T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:为了提高旋翼螺旋桨的综合气动性能,基于叶素-动量组合理论并耦合了计算流体力学(Computational fluid dynamics,CFD)方法,设计了一款旋翼螺旋桨,进行了螺旋桨巡航及悬停状态的气动特性计算及流场仿真,计算结果与风洞试验数据进行了对比分析。研究结果表明,在进行网格无关性研究基础上,数值计算与风洞试验的误差较小,设计点平均计算误差为3.0%左右,所采用的CFD计算方法具有较高准确性和可信度。设计的旋翼螺旋桨巡航效率高于80%,悬停效率高于70%,具备了较好的巡航及悬停的综合气动性能。
摘要:针对一种螺线管线圈式MEMS(微机电系统)永磁电动机进行了热分析并给出了初步测温方案。介绍了此MEMS永磁电动机的总体设计方案,选用单晶硅衬底内二氧化硅绝缘的绕组达到散热性能优异的目的,利用ANSYS的稳态传热和静结构力学模块进行热固耦合模拟。在此基础上,通过数值模拟验证了电动机静子温度分布均匀,可将绕组和衬底视为无温度梯度。通过热固耦合模拟,得出不发生膨胀失配的最大工作温度为86℃和相应的最大发热损耗功率为2.83 W,据此预估电动机的额定工作性能,验证了本电动机的耐温能力和高功率密度潜力,最终设计的额定输出功率为0.362 W,计算的设计功率密度为0.117 W/g。
摘要:为掌握共轴对转螺旋桨的桨间气动干扰规律,降低桨间气动干扰强度,提升共轴对转螺旋桨的气动性能,基于非定常雷诺平均Navier-Stocks方程耦合湍流模型的计算方法,并使用了滑移网格技术,研究了4种不同桨间距的6×6构型对转螺旋桨的桨间气动干扰对其气动性能的影响,桨间距选择了4种不同方案。研究结果表明:在4种不同的轴向桨间距中,当桨间距为0.25倍螺旋桨直径时,共轴对转螺旋桨的平均推进效率最高,并且气动干扰导致的效率脉动幅度较小;随着桨间距的增大,前、后排桨受到的气动干扰强度都会减小,相比于后桨,前桨因气动干扰造成的脉动对桨间距更加敏感。可见共轴对转螺旋桨的桨间距会对螺旋桨的气动干扰,及气动性能产生较为明显的影响,在设计共轴对转螺旋桨时选择合适的桨间距,有利于提高螺旋桨气动性能。
摘要:重点研究了综合考虑变形代价及气动收益的可控变形叶型优化设计方法。利用机器学习算法构建叶型几何与关键气动参数之间的预测模型,量化变形代价及气动收益,并搭建贝叶斯优化框架进行寻优。结果表明:基于机器学习的预测及优化框架能够准确预测风扇变形后的气动性能,且在考虑变形代价的条件下对叶型变形收益边界进行评估。主要结论是利用机器学习算法结合叶斯寻优框架可以获得兼顾变形代价以及气动收益的变形方案。相比于单纯的气动优化方案,此方案可以在保证气动性能提升的同时,使叶片最大应力降低14.17%,压电片驱动能耗降低67.45%。
摘要:为了提升高速航空螺旋桨的气动性能,通过计算流体力学(computational fluid dynamics,CFD)方法研究了平凸翼型NACA4412、超临界翼型RAE2822和高雷诺数薄翼型NACA65206在不同马赫数Ma、不同攻角下的升阻比变化规律,以及翼型流场的马赫数等值线分布等。通过翼型的升阻比特性研究,选用NACA65206翼型设计了一款高速航空螺旋桨,并进行了螺旋桨流场的CFD仿真和气动性能计算。结果表明:随着马赫数从0.5提高到0.9,NACA65206翼型具有更好的升阻比特性,并且失速特性不断改善;采用NACA65206翼型设计的螺旋桨在0.6飞行马赫数下,推进效率高于80%,在0.7飞行马赫数下,推进效率高于75%,说明了使用薄翼型结合大后掠角度设计的高速航空螺旋桨具有较好的推进效率。
摘要:在空间探测任务中,探测器的姿态控制是保证各项任务完成的基础,虽然探测器的着陆控制技术已日趋成熟,但地外起飞阶段的姿态控制研究还相对较少.本文设计了一种适用于深空探测器在外星不确定性环境下起飞时的模糊控制器,通过对姿态角与角速度进行分档模糊化处理降低计算量;建立将姿态角和角速度映射到输出力矩的模糊控制规则;根据模糊规则输出的模糊量,通过去模糊化得到控制器的开关状态输出,实现对探测器姿态的快速有效控制.利用数值仿真测试了控制器的控制效果,以及在起飞初始姿态和发动机安装存在偏差时的鲁棒性,在ADAMS环境下对探测器起飞过程进行物理仿真.结果表明,相比于经典PD控制方法在实际模型与理想模型有差别时导致的控制发散,该控制器在参数不确定下具有更强的鲁棒性,满足了深空探测器自主起飞时对姿态控制的需求.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn