T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:针对物理模型抗噪能力差且容易过拟合的问题,提出一种PROSAIL模型结合VMG(VARI(Visible atmospherically resistant index)、MGRVI(Modified green red vegetation index)、GRRI(Green red ratio index))多元回归模型反演冬小麦叶面积指数(Leaf area index,LAI)方法。实验基于无人机影像(Unmanned aerial vehicles,UAV),选择河南省焦作市东南部的山阳区为实验区,结合实测2个生育期冬小麦LAI数据。首先,构建RGB植被指数模型,选取其中最优VMG模型反演冬小麦LAI;然后,对PROSAIL参数敏感性进行分析,得到参数最优值,反演冬小麦LAI;最后,采用快速模拟退火(Very fast simulated annealing,VFSA)算法将两种模型结合,获得最优冬小麦LAI。结果表明:VFSA可以有效将PROSAIL模型和VMG模型结合,提高了反演精度,且优于VMG模型和PROSAIL模型,决定系数R^(2)高于0.8,均方根误差(RMSE)低于0.4 m^(2)/m^(2)。综上所述,冬小麦生长过程中,地面覆盖度增高,本文方法具有较强的辐射传输机理,为LAI反演提供一种有效的反演方法。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn