T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:为了提升传统钢框筒结构的延性和耗能能力,提出采用拼接板螺栓连接的可恢复功能剪切耗能型钢框筒结构(FTS-SRSL),该结构结合了可更换剪切型耗能梁段和钢框筒结构具有良好的抗震性能。该文对一个2/3缩尺的单层单跨FTS-SRSL子结构试件进行了往复加载试验,试验结果表明,FTS-SRSL子结构试件具有良好的抗震性能,结构损伤集中于耗能梁段,且耗能梁段可实现更换。在试验的基础上,以耗能梁段长度比、耗能梁段腹板加劲肋间距、螺栓直径、翼缘拼接板和腹板拼接板厚度为参数,利用ABAQUS建立了15个足尺的单层单跨FTS-SRSL有限元模型,探究各模型的抗震性能,包括承载力、刚度、耗能以及塑性变形能力。有限元分析结果表明:改变拼接板螺栓连接的剪切型耗能梁段长度比会显著影响结构的承载力、刚度及耗能,建议FTS-SRSL中的拼接板螺栓连接剪切型耗能梁段长度比取0.73~1.09;改变耗能梁段腹板加劲肋间距对结构的承载力、刚度和耗能影响较小,基于该文的分析结果,建议FTS-SRSL中的拼接板螺栓连接剪切型耗能梁段腹板加劲肋间距取e/4~e/3(e为耗能梁段长度),且间距应满足我国抗规的规定;改变翼缘拼接板和腹板拼接板厚度对结构的承载力、刚度及耗能基本无影响;改变螺栓直径对结构承载力、刚度及耗能影响较小。
摘要:以往有关忆阻器模型及其应用研究主要集中于忆阻器基本概念构建并分析忆阻器模型及其等效电路模型,而基于市场上商用忆阻器件的研究则很少.本文根据忆感器与忆阻器之间的理论关系,基于全球首款商用忆阻器芯片: Knowm 忆阻器,结合第二代电流传输器和跨导运算放大器,构建了一种新型忆感器模型.通过调节输入信号的频率和幅值以及运算跨导放大器的跨导增益,可有效地在电路中实现忆感器忆感值的连续调节.设计了新型忆感器的 LTspice 电路模型和硬件实验电路,以电路仿真结果和硬件电路实验结果验证了新型忆感器模型的有效性和设计方法的正确性.
摘要:为实现水泥混凝土路面错台自动检测,分析了主动光学三维形状测量技术,利用面阵CCD相机作为图像接收装置,构建了主要包括电源子系统、图像采集子系统、触发子系统与GPS定位子系统的基于线激光扫描的水泥路面错台检测平台。根据水泥混凝土路面三维检测数据的噪声特点来确定噪声滤波阈值,先进行均方差滤波,再对处理后的三维数据进行开运算和腐蚀运算,消除数据中的孤立点。根据滤波之后的三维数据矩阵大小分成均匀的块,利用块的均值消除斜面,再依次取消除斜面之后的三维信息数据矩阵的每一行的拐点,得出拐点矩阵,从而计算出错台量。为了验证检测方法的可行性和有效性,在实验室模拟了平行错台、梯形错台和交叉错台,按错台量的大、中、小分别进行3次检测,并与水准仪检测结果进行对比。对同一错台,用水准仪和三维检测方法分别进行10次重复性检测,分析了检测方法的重现性。试验结果表明:检测方法测量结果与水准仪检测结果的绝对误差中有96%小于1mm,水准仪检测结果的标准差约为三维检测方法的7.8倍,表明三维检测方法具有较好的准确性、稳定性和可重现性,可用于水泥混凝土路面错台自动检测。
摘要:钻孔剪切试验是一种土体抗剪强度参数的原位测试新方法,近年来在国内被逐步推广应用。为揭示重塑黄土的钻孔剪切变形与强度特性,对传统钻孔剪切仪进行改进,增加法向位移和剪切位移观测系统,设计钻孔剪切室内模型试验装置,通过模型试验探讨首级法向压力、分级法向压力增量、固结时间和加载剪切方式等对抗剪强度参数测试结果的影响规律,并总结钻孔剪切试验参数的控制方法,用于指导采用垫层法和挤密法处理黄土地基的钻孔剪切试验,试验结果表明,法向位移曲线包括初始变形段、似弹性变形段和塑性变形段:剪切位移曲线包括似弹性增大段、塑性变形段和剪切破坏段;施加的法向压力应控制在法向位移曲线的似弹性变形段范围内:分级加载剪切法与分别加载剪切法测得的抗剪强度参数差异不显著,前者较于后者的黏聚力偏小2.3~3.5 kPa,内摩擦角偏大0.8°~2.4°。
摘要:设计了两类不同钢骨形式带环梁的方钢管约束钢骨混凝土柱-钢梁节点,运用ABAQUS有限元软件建立了该节点的数值分析模型。分析了此类节点的滞回性能、应力分布及破坏形态,考察了外钢管径厚比、内钢骨形式、节点区高度、混凝土强度及轴压比5个参数对该节点抗震性能的影响。结果表明:该类节点滞回曲线饱满,耗能性能良好,且应力分布及破坏形态符合抗震设计中"强柱、弱梁、节点更强"的要求,为今后该类节点的设计和研究提供了理论支撑。
摘要:为保证雨天环境下高速公路行驶安全,降低道路整体运行风险,结合雨天风险特征,开展考虑运行风险的雨天可变限速研究。首先应用随机森林模型,标定雨天环境下高速公路动静态风险因素的特征重要度,并结合熵值理论,建立高速公路风险模型、计算风险系数、划分风险等级;之后,以空域自适应算法中可变限速推演变化规律为基础,考虑大、小型车的行驶特征,结合预期风险、雨天停车视距、水膜厚度等因素,优化可变限速模型,细化大、小型车辆的初始控制值,进而提出不同降雨强度、不同能见度下的可变限速推荐值;在此基础上,利用驾驶模拟实景仿真系统、心理生理检测设备、微观交通流仿真软件,开展可变限速系统控制值合理性及驾驶人行车适应性与交通流运行状态的实证分析。研究结果表明:随着能见度降低和降雨量增大,在可变限速控制下,驾驶人呈现出交感神经兴奋性减弱、副交感神经兴奋性增强、心理紧张度降低的状态,其平均心率、心率变异性高频值、心率变异性低频值、心率变异性差异值分别由74.13、0.121、0.643、2.37变为78.23、0.192、0.567、2.01,驾驶人对限速方案的适应性良好;同时,可变限速可保证道路整体通行效率,不会造成交通流风险震动,在小型车、大型车限速分别为80、60 km·h和小型车限速60 km·h、大型车禁止驶入场景下,碰撞时间均值、中值大于未限速场景,各车道的行车安全性均能得到保障;提出的雨天可变限速控制方法合理,且具有一定工程适应性,能为异常天气高速公路宏观车流主动防控提供理论支撑。
摘要:采用试验和非线性有限元分析两种方法研究了节点区的受力特点,明确了其抗剪承载力主要由节点区各组成部件共同承担,并分析得到节点区各部件对其抗剪承载力的贡献大小。通过对节点区各部件受力机理的分析,推导出了节点区各部件的抗剪承载力计算方法。最后,通过叠加原理得到了此新型节点的抗剪承载力计算公式,通过与试验及有限元分析结果的对比可知,该计算公式安全、合理,可以满足"强节点、弱构件"的工程抗震设计原则。
摘要:该文结合带平直段的双圆锥阻尼器和低屈服点钢材的特性,设计了LYP225低屈服点钢哑铃形钢棒阻尼器(LY225-WDP),该阻尼器具有屈服位移小、延性高、耗能能力稳定的特点。利用低屈服点钢LYP225设计了7个不同构造参数的LY225-WDP试件,并对其进行低周往复循环荷载试验,研究阻尼器在循环剪切变形下的滞回与耗能能力,以及不同设计参数对阻尼器力学性能的影响。结果表明:在循环剪切变形下,LY225-WDP的变形特点主要表现为弯曲变形,破坏模式属于低周疲劳破坏;阻尼器的滞回曲线饱满,稳定性良好,在整个加载过程中,表现出明显的强化现象,延性系数在8.50~10.04,超强系数在2.09~2.79;阻尼器的弹性刚度及承载力在耗能段内径及长度一定时与内缩率呈正相关,在耗能段外径及长度一定时与内缩率呈负相关;阻尼器的耗能能力随着平直段长度的增加而明显提升;对LY225-WDP建立了弹性刚度及屈服承载力计算公式,试验数据验证了公式的准确性,可为LY225-WDP的设计提供参考。
摘要:设计了一种环梁式圆钢管约束H型钢混凝土柱-钢梁节点,并建立了该试件的全尺寸三维有限元分析模型,计算得到了此类节点试件的滞回曲线、骨架曲线及破坏模式,经与试验结果进行对比,两者吻合良好.在此基础上,对试件进行有限元变参数分析,考察了轴压比、混凝土强度、梁柱线刚度等对试件抗震受力性能的影响,同时提出了一种改进型梁端削弱翼缘的节点形式.结果表明:随轴压比增大,试件的耗能及延性性能明显下降;混凝土强度的变化对试件滞回性能影响不大;当保持柱截面不变,仅变换钢梁尺寸时,节点的承载力、延性及抗震耗能性能均随梁-柱线刚度比的增大而显著增大;而当保持钢梁截面不变,仅改变柱内型钢含钢率时,节点抗震受力性能随梁-柱线刚度比的变化并不明显;改进的梁端翼缘削弱形式的试件可在不明显降低其承载力及耗能性能的情况下,将塑性铰外移至距节点区较远的地方,从而更好地保护节点区.上述研究结论可为此类新型节点的应用提供理论基础.
摘要:为研究高延性混凝土(HDC)加固无筋砖墙的抗震性能,设计制作了3片HDC面层加固砖墙、1片钢筋网水泥砂浆面层加固砖墙和1片作为对比试件的未加固砖墙,通过拟静力试验,研究了HDC面层加固砖墙的破坏形态、滞回性能及耗能能力。试验结果表明:HDC面层可对墙体形成约束作用,延缓墙体开裂并改变墙体的破坏模式,提高墙体的承载力和延性;与钢筋网水泥砂浆面层加固相比,单面HDC加固的墙体开裂荷载与耗能能力明显提高,承载力下降缓慢。针对试件的破坏形态,考虑未开裂区加固面层对墙体水平承载力的贡献,提出了加固墙体的承载力计算方法,并根据试验结果进行了验证。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn