T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:In virtual simulation application, it is often necessary to use Open GL to render large-scale 3D static scenes including urban architectures. Each scene unit generally has individual vertex data and texture. For large-scale data set, it is hard to render all scene units simultaneously. We need to render part of the scene separately, which is called the scene partition and culling. In general, we partition the whole scene into different units on the CPU. We present a scheme that optimize the GPU rendering pipeline to cull the large-scale static scene, which will reduce the CPU suspending time and take full advantage of GPU computing advantages to speed up the rendering efficiency.
摘要:In recent years, image-based anti-aliasing techniques have been widely investigated in real-time computer graphics. Compared to traditional routine of anti-aliasing, image-based methods, which combined with deferred shading, can efficiently decouple anti-aliasing step from standard graphics pipeline. However, most of the existing image-based methods consume video memory, bandwidth and computation resources heavily. In this paper, we propose an optimized anti-aliasing method, which can efficiently reduce the multi-sampling rate by a multi-sampling mask. We carefully designed the rendering system to avoid serial execution on branch divergence, by utilizing both modern GPU’s features and latest shader model. Experimental results demonstrate that our method can achieve high-quality synthesized image with real-time performance.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn