T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:为了改善汽车驱动桥动态性能,提出基于Ease-off修形准双曲面齿轮齿面减振优化设计方法。该方法通过预置传动误差参数及抛物线修形参数设计小轮法向Ease-off曲面,小轮修形齿面表示为与大轮共轭的小轮齿面叠加Ease-off曲面。结合齿面接触分析(TCA)、齿面承载接触分析(LTCA)方法获得齿轮啮合刚度。以啮合位置受力分析为基础,应用集中质量法建立准双曲面齿轮弯-扭-轴耦合动力学模型,采用数值方法求解运动微分方程得到系统的振动响应。以法向振动加速度均方根最小为优化目标获得最佳修形齿面,并分析修形导致的刚度波形及幅值变化对系统动态性能的影响。算例表明:当修形量过大时导致刚度下降较多,引起法向振动增加;修形齿面的平均啮合刚度相差不大情况下,刚度曲线的形状较幅值对振动的影响更为敏感;最优Ease-off修形后系统振动明显降低,齿轮副的平均啮合刚度下降较少且刚度曲线中主要为啮合频率,基本无倍频成分;修形齿面承载传动误差幅值(ALTE)降低且曲线中的高频成分增加时,未必能减小振动;多载荷ALTE曲线基本可以反映振动随载荷的变化趋势。
摘要:齿轮齿条升降机构是自升式平台的重要传动和承载装置,啮合产生的接触应力和由于刚度激励引发的振动是影响升降系统传动性能与使用寿命的重要因素,因此通过进行结构的优化设计和仿真分析提高传动机构动力学性能具有重要的工程意义。提出通过优化设置自升式海洋平台齿轮齿条升降机构小齿轮之间相位差的方式实现错齿啮合,从而实现有效提高机构承载能力和动力性能的目的。结合提出的错齿优化方案,对错齿前后齿轮齿条啮合过程进行动态接触有限元分析,并验证错齿优化对传动机构强度和时变刚度的改善效果,并对比分析齿轮齿条传动机构模态特性、运动平稳性和同步性以及小齿轮载荷分配均匀性等动力学行为。结果表明,错齿优化后齿轮齿条升降机构在动态啮合时能够产生更小的接触应力和弯曲应力,而且齿轮综合刚度的阶跃值有明显减少,与此同时在传动平稳性、同步性和载荷分配均匀性方面也具有良好表现。因此错齿优化可有效地提高齿轮齿条传动过程中的承载能力和运动性能,对改进齿轮齿条升降机构的设计具有参考价值。
摘要:基于能量法与切片理论,提出了一种非对称直齿轮副啮合特性及振动特性分析模型.该模型将延长啮合、非线性赫兹接触、齿基刚度修正以及轮齿修形考虑在内,能较为准确地分析非对称直齿轮副的啮合特性.通过将解析方法得到的时变啮合刚度和接触应力与有限元方法得到的结果进行比较可以得知:两种方法得到的啮合刚度和接触应力吻合很好,并且解析方法的计算效率远远高于有限元方法;随着工作侧压力角的增大,齿面接触应力和齿轮副重合度减小,啮合刚度增大.在啮合特性分析模型的基础上,建立了非对称直齿轮副动力学模型.通过振动特性分析可知:随着工作侧压力角的增大,振动幅值增大,系统的固有频率略微降低.本文解析模型可以为非对称直齿轮副的设计提供理论依据.
摘要:为了更合理地分析高速圆柱斜齿轮非线性振动特性、有效抑制齿面振动。通过考虑增/减速状态的轮齿承载接触模型,建立了考虑齿背接触特性的圆柱斜齿轮动态啮合刚度,得出齿面啮合刚度同时与啮合时间和齿面振动位移之间的耦合机理;进一步建立考虑齿面/齿背啮合刚度、线外啮合冲击激励的高转速圆柱斜齿轮传动系统非线性振动模型,并在此基础上展开同时计及齿面、齿背接触状态的双齿面减振修形优化研究。实例计算结果表明,计及齿背啮合刚度的振动加速度明显大于未考虑齿背啮合刚度的振动加速度,且系统表现出更加复杂的分叉特性;相较于标准齿面和单面修形,双面修形的圆柱斜齿轮具有最小的齿面振动加速度,且双面修形齿面在减缓圆柱齿轮振动的同时,也增大了系统可供稳定工作的转速区间范围,具有较好的工程实际应用价值,对提升系统稳定性设计有着积极的指导意义。
摘要:考虑齿轮副的时变啮合刚度、啮合阻尼及轮齿的综合误差,建立了船用齿轮传动系统的动力学模型;将齿轮副接触线长度变化代替齿轮瞬时啮合刚度的变化,啮合阻尼和齿面摩擦等效为粘性阻尼以提高求解效率。并以齿轮的振动加速度和质量为目标函数,对船用齿轮传动进行多目标动态优化,有效降低船用齿轮的振动水平和质量。
摘要:针对实际高速齿轮转子系统,建立了考虑齿轮啮合及扭转作用的弯扭耦合非线性振动模型,推导了不平衡转子弯扭耦合振动的动力学微分方程,通过数值仿真方法得到了工作转速下齿轮转子系统弯扭耦合振动的特征图形,得出齿轮啮合、扭转作用下的齿轮转子系统弯扭耦合振动的特征,研究了偏心距、齿轮啮合刚度等参数对系统振动响应的影响规律,为齿轮转子耦合系统的结构优化设计、诊断和安全经济运行提供一定的理论依据。
摘要:齿轮传动系统在工作时常承受复杂多变的外部波动载荷,导致轮齿啮合特性和系统振动响应频率特征复杂.基于时变啮合刚度的能量法合成模型,建立考虑系统扭振和横振响应影响的时变啮合刚度动态修正模型.建立单级齿轮传动系统的弯扭耦合模型,用Newmark法求解系统的振动响应.利用啮合刚度动态修正模型和齿轮系统弯扭耦合模型,通过数值算例分析波动负载对啮合刚度和系统振动响应的影响.结果表明,在波动负载作用下,啮合刚度和系统振动响应均存在明显的以波动负载频率为调制频率的边频调制现象,且被调制的中心谐波频率越高,调制现象越明显;外部波动负载的幅值越大,啮合刚度和系统振动响应的调制现象越明显,且当波动负载幅值较小时,表现为窄带调频和调幅的叠加,啮合频率两侧仅各有一条明显的边频谱线.
摘要:由于对齿轮进行鼓向修形可以有效缓解不对中故障对系统的影响,改善啮合状态,提升传动的平稳性.因此,基于轮齿承载接触分析理论建立考虑轮齿修形以及不对中的啮合特性分析模型,并通过ANSYS对模型的有效性进行了验证;基于本文模型分析了不同接触状态下的齿轮副时变啮合刚度与接触应力;最后以降低齿面接触应力为优化目标,对不对中齿轮副的鼓向修形量进行了优化.本文方法在保证计算精度的前提下极大地提升了计算效率,可为不对中齿轮副的修形优化设计提供理论依据.
摘要:基于Timoshenko梁理论和有限单元法,引入时变啮合刚度和综合啮合误差,建立了人字齿轮系统动力学模型,研究了齿距累积误差对人字齿轮系统动态特性的影响。研究表明:齿距累积误差使动态传递误差出现显著的轴频成分和调制边频带。当负载扭矩较小时,边频成分大于啮合频率及其倍频成分,随着负载扭矩的增加,啮合频率及其倍频成分逐渐增强。当齿距累积误差相位不同时,人字齿轮系统将出现明显的轴向窜动现象。同时,齿距累积误差相位差对系统振动影响显著,通过调整相位差可以显著降低系统振动。研究结果可为人字齿轮系统低噪声设计加工与装配提供理论依据。
摘要:为了降低面齿轮传动系统的振动与噪音,预设二阶与四阶传动误差、接触路径倾角及接触椭圆长轴,对面齿轮副进行主动修形,建立面齿轮传动系统动力学模型;以啮合线振动加速度均方根为优化目标,运用遗传算法获得最优主动修形参数,分析了系统的分岔特性及啮合刚度对系统响应的影响.结果表明:二阶与四阶传动误差优化后的啮合线振动加速度均方根较理论值分别降低了85.7%和88.1%,四阶传动误差在减振方面效果更佳;系统的振动不仅与啮合刚度均值有关,啮合刚度高阶谐波幅值对振动有较大影响;传动误差与接触路径倾角在合理取值范围内,增大接触椭圆长轴长度对降低振动有利,推荐的接触路径倾角在10.5°和13.5°邻域内;主动修形可缩小混沌运动窗口,有利于提高系统的稳定性;研究结果可为面齿轮副的减振设计提供理论依据.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn