T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:为实现直连式试验台、高温风洞等试验设备的多马赫数运行,提出了双拐点喷管设计方法.喷管分2段设计,第1段共用,采用3次B-Spline函数描述喷管轴线马赫数分布.首先采用特征线方法求解Eul-er方程,得到无黏的理想喷管型面.其次采用参考温度方法求解边界层位移厚度,对无黏壁面进行修正得到实际壁面.共用段喷管出口的平行均匀流作为第2段喷管设计的初值.为验证设计方法的可行性,设计了中间马赫数为3.0,出口马赫数分别为4.0,4.5和5.0的双拐点喷管,并采用雷诺平均的Navier-Stokes方程对设计的喷管流场进行数值模拟.计算结果表明:喷管出口流场均匀,试验菱形区的马赫数误差小于1.2%.该方法提高了喷管设计精度,保证消波干净,为直连式试验台、高温风洞等设备的多个喷管共用一套动力系统提供了基础.
摘要:在高超声速飞行技术领域,特别是涉及到高焓气体流动的研究,高超声速风洞试验仍然是目前最可靠的研究手段.风洞流场的品质是高超声速风洞研发最重要的一项性能指标,其取决于喷管设计采用的理论与方法,也是风洞设计最关注的一项核心技术.针对二维轴对称型面喷管设计,本文首先综述了传统高超声速喷管设计的主要理论和常用方法,它们在高超声速喷管设计中曾经发挥了重要作用,包括理论方法,近似方法和基于两者的修正方法.然后,考虑高温气体效应,分析了高焓喷管设计时面临的困难与问题,从流动介质物性变化、高温边界层发展和非平衡过程效应三方面,综述了国内外在高超声速高焓喷管设计方面的研究进展.最后,对于高焓喷管的设计理论和方法的发展作了展望,期望对于推动我国高超声速高焓喷管设计技术的发展提供一些有意义的启示.
摘要:根据超声速自由旋涡气动窗口的实现原理以及相关气动设计理论,推导出气动窗口的质量流率公式,得到影响气动窗口质量流率的几个因素,研究了自由旋涡气动窗口喷管设计过程,利用特征线方法设计非对称喷管,得到气动窗口的喷管型面。最后对气动窗口喷管进行了初步数值模拟,模拟结果表明利用特征线方法设计喷管是可行的。
摘要:超燃冲压发动机尾喷管与燃烧室直接相连,由于没有几何喉道和收缩段的整流作用,实际工作过程中尾喷管的进口气流是非均匀的,因而有必要研究非均匀进口条件下的尾喷管设计方法.以超燃冲压发动机尾喷管非均匀进口马赫数分布为条件,采用有旋特征线设计了超燃冲压发动机非对称尾喷管的等熵膨胀型线.利用数值模拟和试验相结合的方法研究了冷流条件下喷管的气动性能.结果表明,在相同的进口条件下,相对于假定进口马赫数均匀分布设计得到的喷管,考虑进口马赫数非均匀分布设计的喷管推力增加0.6%~2.0%,负升力降低可达82.0%,俯仰力矩增加8.6%~13.0%,这说明在喷管的设计过程中考虑进口参数分布的非均匀性是有必要的.
摘要:简述了喷管作用和单个喷管型面设计中存在的问题 ,根据气动理论提出了一种喷管设计新方法 ;介绍了DF HF激光器喷管流动数值模拟的控制方程、初边值条件和CS方法。
摘要:提出了基于B-Spline曲线和特征线方法的超声速型面可控喷管设计方法,通过设置喷管轴向马赫数分布可以灵活地调整喷管的型面形状。数值验证结果表明,该方法不仅可以设计出高品质的喷管出口流场,而且能够实现喷管型面的灵活调整,可以获得长度与最短长度喷管一致,但流场品质更优的喷管。
摘要:激波风洞是开展高超声速飞行器气动力实验的重要地面试验设备,喷管是形成激波风洞试验流场的关键部段.针对大尺度高焓激波风洞,展开轴对称型面喷管设计方法的研究.喷管设计包括无粘型线设计和边界层修正两部分.无粘型线确定后会对其进行边界层位移厚度的修正.由于喉道处边界层位移厚度相较于特征长度(喷管喉道半径)是一个小量,传统的无粘型线设计方法在进行边界层修正时一般将其忽略.这一假设适用于很多超声速及高超声速喷管.但是大尺度高马赫数喷管需要考虑喉道处边界层的影响.对于高焓激波风洞,高温气体效应以及化学非平衡的影响较大,在喷管设计中不可忽略.本研究对高温气体效应以及边界层进行必要修正,并在数值模拟中考虑化学非平衡的影响.在特征线法的基础上,比热比等特征区关键参数取决于CFD数值模拟的结果.比热比可根据组分信息通过NASA拟合曲线来计算.然后通过叠加计算得到的边界层位移厚度进行迭代的边界层修正.本文利用改进的Sivells法设计Ma17喷管,并对其进行CFD数值模拟.喷管出口高度为2.5 m,总温和总压分别为7400 K, 30 MPa.
摘要:喷管是发动机产生推力的主要部件,其气动性能对发动机的性能具有决定性的影响。本文利用简化特征线法设计二元收敛-扩张(2DCD)推力矢量喷管模型;采用RNGk-ε湍流模型和非平衡壁面函数对单缝二次流喷射后的喷管流场进行数值模拟,分析了射流位置、主流落压比(NPR)、二次流与主流总压比(SPR)等参数对矢量喷管气动性能的影响。计算结果表明:二次射流位置对激波强度及推力矢量角有较大影响,开缝位置越接近喷管出口,推力矢量越大;喷射位置固定,激波强度和推力矢量角主要受SPR影响;SPR相同,随着NPR的增加,存在着一个最大推力矢量角。
摘要:采用数值模拟的手段,对半柔壁喷管流场进行模拟。主要目的是通过研究流场的均匀性,确定喷管各气动设计控制参数对设计结果的影响,为半柔壁喷管的设计优化提供指导。本文着重研究了不同喷管最大膨胀角θA,喷管半消波区控制参数θB,喷管半消波区分布控制参数m,边界层修正角,收缩段型面形式等因素对流场的影响。对得到的结果进行了分析,初步确定了进行半柔壁喷管设计的控制参数,为下一步工作打下了基础。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn