T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:以福州市二环路金鸡山隧道为工程背景,利用数值模拟方法研究偏压条件下特大断面隧道的地震动态响应(包括地层加速度及衬砌接触压力的动态响应),并与已完成的振动台模型试验结果相互对比验证.数值模拟结果表明:地层各测点的PHA放大系数,沿地层中轴面及衬砌边缘随高程呈对数型增长,沿临空侧坡面随高程呈指数型增长;中上部地层各测点的PHA放大系数,随地震动幅值增大呈近似线性减小趋势,而下部地层各测点的PHA放大系数则基本不变.上述数值模拟结果所表现出的高程效应,与模型试验结果基本一致.另一方面,由于地形偏压影响,静止工况下隧道衬砌上的接触压力表现出一定的偏压效应;随着地震动幅值增大,其偏压效应被进一步放大,大震幅工况下靠山侧衬砌所承担的最大接触压力约为静止工况的3倍,最小接触压力几乎为零(即衬砌与围岩完全脱空).但相比于模型试验,本次数值模拟中的衬砌始终设置为弹性状态,可能高估了其所承担的接触压力.
摘要:在已完成的振动台模型试验基础上,进一步采用数值模拟方法定量研究含软弱夹层锚框支护边坡的地震动态响应规律.坡面与坡内各测点处的水平加速度峰值(PHA)放大系数均随高程增加而非线性增大,表现出明显的鞭梢效应;但软弱夹层的存在改变了其附近测点高程效应表现形式,并在大振幅工况下表现出明显的隔震效应.小振幅工况下,各测点处的正负向水平土压力峰值(PEP)震荡系数都大致相等;随着地震动幅值增大,最小动土压力逐渐趋于为零(几乎脱空);而最大动土压力可高达静止土压力的4~7倍.高频成分丰富的WC波,其卓越频率与边坡自振频率较接近,故其引起加速度与土压力动态响应,均明显大于其他类型地震波.以上数值模拟所反映的含软弱夹层锚框支护边坡地震动态响应规律,与振动台模型试验结果大致吻合.但从量值上看,数值模拟中PHA放大系数(坡顶部位)和PEP震荡系数(正向)均明显大于模型试验结果,认为模型试验中相似材料超强设计、测点布设过少等缺点,应在进一步研究中予以克服.
摘要:以福州市二环路金鸡山隧道为工程原型,设计制作了浅埋偏压条件下特大断面隧道的1/30缩尺模型,完成了20种工况下的模拟地震动试验,重点关注隧道模型加速度、衬砌接触压力、衬砌表面应力的地震动态响应。隧道中轴面各测点PHA放大系数随高程呈近似对数型增大,改变了原场地高程效应的表现形式;隧道模型的第一卓越频率与EL波的卓越频率较为接近,其共振效应使得EL波激励引起的高程效应明显大于其他地震波。靠山侧衬砌结构所承担的地震动附加压力显著大于临空侧,且在大振幅激励下,其拱腰所承担的地震动附加压力反而大于拱脚。隧道衬砌结构的扁平率和几何曲率,对其动应力峰值的分布均有显著影响,尤其是在大振幅激励下,靠山侧拱脚处的动应力峰值显著大于其他部位。衬砌结构的裂缝发展形态特征,与接触压力峰值及动应力峰值沿衬砌环向分布的规律是相一致的。上述成果为浅埋偏压条件下特大断面隧道抗震设防提供了参考。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn