T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:分析了电力系统负荷预测目前采用方法的不足,并根据电网负荷的特点提出一种基于模糊支持向量的核回归方法,同时提出多参数同步优化策略,增强了该方法的实用性和有效性.从理论上分析了小样本条件下,该方法可以有效避免过学习的原因,它不需设计网络结构,降低了对实验人员经验的依赖程度.与神经网络法进行对比实验,实验结果表明了该方法的优越性和适用性,并具有较好的实用价值和应用前景.
摘要:针对传统的自适应随机共振只能实现单参数优化和变步长随机共振计算步长选取困难的缺陷,提出一种基于粒子群优化算法(Particle Swarm Optimization,PSO)的自适应变步长随机共振方法,实现了变步长随机共振最优输出的自适应求解。该方法以双稳系统的输出信噪比作为粒子群算法的适应度函数,通过变步长随机共振系统的结构参数和计算步长的自适应同步选取,能够最优地检测出大参数条件下的微弱信号。仿真数据和工程实际数据的分析表明,该方法简单易行,适用范围广,收敛速度快,能有效的检测出强噪声背景下的高频微弱信号,具有良好的工程应用前景。
摘要:根据电网负荷混沌性的特点,提出一种基于模糊支持向量的核回归方法进行电力系统的负荷预测。同时提出多参数同步优化策略,增强了该方法的实用性和有效性。从理论上分析了小样本条件下,可以有效避免过学习的原因,该方法不需设计网络结构,降低了对实验人员经验的依赖程度。选取实际负荷时间序列数据,通过与神经网络法进行对比实验,结果显示出该方法的优越性和适用性,具有较好的实用价值和应用前景。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn