T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:针对视频序列中表情强度不一致,长短时记忆网络(LSTM)难以有效地提取其特征的问题,提出一种基于面部运动单元和时序注意力的视频表情识别方法.首先在卷积LSTM(ConvLSTM)的基础上引入时序注意力模块,对视频序列进行时序建模,在降低维度的同时保留丰富人脸图像特征信息;其次提出基于面部动作单元的人脸图像分割规则,解决面部表情活跃区域难以界定的问题;最后在模型中嵌入标签修正模块,解决自然条件下数据集中样本不确定性的问题.在MMI,Oulu-CASIA和AFEW数据集上的实验结果表明,所提方法的模型参数量低于已公开的主流模型,且在MMI数据集上的平均识别准确率达到87.22%,高于目前主流方法,在整体效果上优于目前具有代表性的方法.
摘要:气温变化与人类的生产生活密切相关,对人类出行计划、农林生产以及军事作战等方面都有着重要影响,因此对于大气温度更加精准的预测具有一定现实意义。针对传统预测模型对气温预测精度不佳的问题,提出了一种融合极端梯度提升树(Extreme Gradient Boosting,XGBoost)和改进长短期时序网络(Long and Short-Term Temporal Patterns with Deep Neural Network,LSTNet)的气温预测模型。利用XGBoost进行特征筛选,降低数据维度;利用LSTNet进行改进,在其卷积层嵌入通道注意力(Channel Attention,CA)机制,强化显著特征;把循环神经网络层中的循环门单元(Gate Recurrent Unit,GRU)改为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM),并加入了时序注意力(Temporal Attention,TA)机制,使模型拥有同时提取正反向信息的能力且突出了重要时间步的信息;用建立好的模型进行预测实验和对比实验。实验结果表明,提出的改进模型在气温单步预测时,平均绝对误差(Mean Absolute Error,MAE)为0.303℃,相较于长短期记忆(Long Short-Term Memory,LSTM)神经网络等对比模型,MAE最多降低3.429℃,最少降低0.225℃;多步预测时,MAE随时间步增加,最多降低3.827℃,最少降低0.288℃,说明所提模型在单步预测和多步预测上预测精度都更高,优于同类模型。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn