T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:为了提高雾天图像的去雾效果,提出了一种基于条件生成对抗网络的图像去雾算法.通过端到端可训练的神经网络对合成的室内和室外数据集进行训练,为了捕捉图像中更多的有用信息,在生成网络中设计了生成器和判别器架构,利用预训练的视觉几何组特征模型和L-1正则化梯度对损失函数进行修正,并在判别器的最后一层引入Sigmoid函数用于特征映射,以便进行概率分析可归一化.利用合成数据集对损失函数进行训练,得到新的损失函数的参数,然后利用室外自然有雾图像数据集对训练得到的新的损失函数进行测试.实验结果表明:所提算法有效解决了去雾图像的颜色失真、过饱和、视觉伪像等问题,生成效果更好的去雾图像.
摘要:近几年在图像去雾领域中基于深度学习的方法层出不穷,利用循环生成对抗网络(CycleGAN)设计图像去雾算法。在CycleGAN中,通过对生成器进行改进来达到预期的处理效果。在生成器的编码网络和解码网络中选用Leaky ReLU和tanh两种激活函数,并对转换网络的残差块进行减少数量处理和加权优化处理。本设计能够更好地展示单幅有雾图像的清晰度和细节方面,峰值信噪比、结构相似性及信息熵等客观评价指标都得到了提升。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn