T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:化工动态优化问题的求解是实现化工过程自动控制的基础,对环保与经济效益方面均有理论和实际意义。提出一种ISCSO(混合策略的沙猫优化算法)来达到反应器高效优化的目的。首先,针对SCSO(沙猫算法)种群初始化缺乏多样性、容易聚集的问题,引入Circle混沌映射初始化种群,提高多样性。其次,针对沙猫算法在迭代后期收敛速度较慢、容易陷入局部最优的问题,引入随机游走策略。同时,采用柯西变异策略扰动全局最优解,生成新解,避免陷入局部最优,增强局部搜索能力。最后将其应用于3个具有挑战性的化学动态优化工程问题上,并与其他方法进行对比分析。结果表明,改进后的算法具有更强的寻优和求解能力,证明了其有效性和优越性。
摘要:为提高年降水量预测精度,提出一种基于小波包变换(WPT)和孔雀优化算法(POA)、沙猫优化(SCSO)算法、猎豹优化(CO)算法优化的高斯过程回归(GPR)预测模型,并将其应用于文山州年降水量预测研究。首先,利用WPT将实例1956-2021年降水量时间序列分解为1个周期项分量和3个波动项分量;其次,简要介绍POA、SCSO、CO算法原理,利用POA、SCSO、CO分别优化GPR超参数,建立WPT-POA-GPR、WPT-SCSOGPR、WPT-CO-GPR模型;最后,利用所建立的3种模型对年降水量周期项分量和波动项分量进行预测,将4个分量的预测结果加和重构后得到最终预测结果,并构建基于支持向量机(SVM)的WPT-POA-SVM、WPT-SCSOSVM、WPT-CO-SVM模型、基于RBF神经网络的WPT-POA-RBF、WPT-SCSO-RBF、WPT-CO-RBF模型和未经优化的WPT-GPR模型作对比分析模型。结果表明:①WPT-POA-GPR、WPT-SCSO-GPR、WPT-CO-GPR模型对年降水量预测的平均绝对百分比误差MAPE分别为0.52%、0.46%、0.48%,平均绝对误差MAE分别为5.80 mm、5.31 mm、5.25 mm,均方根误差RMSE分别为8.20 mm、7.72 mm、7.83 mm,确定性系数DC>0.99,预测效果优于其他7种模型,具有更高的预测精度和更好的泛化能力。②POA、SCSO、CO能有效优化GPR超参数,显著提高GPR预测性能。③所构建的3种模型具有普适性,为降水等时间序列预测研究提供参考。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn