T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:以VC++为工具,田间实拍图像为研究对象,在分析田间秸秆和土壤纹理特征差别的基础上,设计了BP神经网络秸秆覆盖率检测系统。该系统采用了神经网络与纹理特征相结合的方法提取秸秆,并以纹理特征熵值为标准建立了网络输入层学习样本选取准则。人工模拟和田间试验表明,设计的BP神经网络秸秆覆盖率检测系统对田间秸秆的识别率达90%以上,秸秆覆盖率计算误差可控制在5%以内;与传统的拉绳法相比,检测效率提高50~120倍。
摘要:秸秆覆盖率是保护性耕作重要的评价指标之一。针对田间秸秆形态各异、细碎秸秆难以识别的难题,基于机器视觉技术,提出了一种基于K-means和彩色空间距离灰度化方法相结合的田间秸秆覆盖率检测算法。采用彩色空间距离方法对秸秆图像进行预处理,基于K-means算法实现秸秆和土壤背景的分类识别,使用数学形态学腐蚀和膨胀方法对识别后的图像进行处理,降低细碎秸秆对覆盖率的影响,最后计算秸秆图像的覆盖率。2022年10月,通过田间试验对北京小汤山国家精准农业研究示范基地采集的220幅玉米秸秆图像进行了算法验证。试验结果表明,对低秸秆覆盖率(0~30%)图像,识别准确率达到90%;对中等秸秆覆盖率(30%~60%)图像,识别准确率达到88%;对高秸秆覆盖率(60%以上)图像,识别准确率达到86%;整体秸秆覆盖率分等定级准确度达到98.18%。本研究设计的基于K-means和彩色空间距离灰度化方法相结合的田间秸秆覆盖率检测算法为保护性耕作评价提供了快速检测方法和手段。
摘要:在分析保护性耕作地块覆盖秸秆和土壤亮度存在差异的基础上,以MATLAB为工具,采用自动取阈图像分割算法,提取田间实拍图像中的秸秆及土壤信息,统计图像中秸秆覆盖面积,利用秸秆覆盖率算法实现对地表秸秆覆盖率的自动检测。系统经田间模拟试验校正后,田间测试误差可控制在4%以内,平均检测效率可提高约72倍,为开展保护性耕作技术秸秆覆盖研究提供了一种可行有效的方法。
摘要:为了对用于秸秆混埋的圆盘耙联合整地机进行整机研发,必须充分了解影响圆盘耙整机作业质量各种参数因素。耙片偏角是结构参数之一,对整机的作业效果有着重要的影响。本文通过研究耙片偏角对秸秆与土壤混埋效果的影响规律,为圆盘耙联合整地机的整机设计提供数据参考。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn