T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:考虑到城市环廊隧道(Urban Traffic Link Tunnel, UTLT)事故通风和火灾烟气控制的难度,为了给其提供防排烟优化设计方案,采用CO_2为示踪气体,对隧道单独采用横向排烟方式时的排烟、排热效率进行考查。对射流风机纵向排烟配合轴流风机集中排烟、射流风机纵向排烟配合排烟井自然排烟2种组合排烟方式在UTLT中的效果进行研究。结果表明:在UTLT中单独使用横向排烟时,随着排烟量的提高,排烟、排热效率增长趋于缓慢;增大横向排烟量会增加风机房与管道的占地面积,可能在城市核心区使用时遇到困难;采用火源上游射流风机纵向排烟与火源下游轴流风机集中排烟配合的方案,在轴流风机排烟量不变的情况下,仅仅依靠轴流风机的驱动力难以抑制烟气往火源上游蔓延;需要借助射流风机营造的纵向气流配合,但纵向风速过大又会加剧烟气向下游分支蔓延;采用火源上游射流风机纵向排烟与火源下游竖井自然排烟配合的方案,在纵向风速一定的情况下,须合理设置排烟井的截面尺寸与高度。
摘要:采用缩尺寸模型试验方法,对不同坡度隧道火灾时拱顶附近烟气最高温度与通风风速、火源功率之间的关系进行了研究.试验结果表明,坡度对隧道火灾纵向通风时拱顶附近烟气温度有较大影响,以纵向通风方向为参考方向,随着隧道坡度的增加,拱顶附近烟气温度呈下降趋势.对比分析水平隧道纵向通风下拱顶最高烟气温度的Kurioka模型,引入坡度修正系数,建立了修正后的拱顶烟气最高温度预测模型,可用于有坡度隧道火灾纵向通风时拱顶烟气最高温度预测.
摘要:以某特长公路隧道为研究背景,采用缩尺寸试验测试、数值模拟的方法分别对纵向排烟和集中排烟模式下隧道内火灾烟气的蔓延特性进行了研究,并对比分析了两种排烟系统在火灾工况下对烟气的控制效果。结果表明,纵向排烟模式将火灾烟气控制在火源下游并从隧道出口排出,高温烟气蔓延范围较长;集中排烟模式通过排烟阀将烟气抽离行车道,有效地控制了烟气蔓延和沉降,高温烟气维持在行车道的上部空间,主要通过竖井排出隧道。采用纵向排烟模式的坡度隧道烟气控制受烟囱效应影响较大,而在设置排烟道的坡度隧道中,将排烟阀开启进行自然排烟就能有效地减弱烟囱效应。因此,采用集中排烟模式的防灾安全性能要优于采用纵向排烟模式。
摘要:为合理设计公路隧道排烟系统的排烟量,采用1∶20缩尺寸模型试验的方法,研究临界排烟速率对公路隧道集中排烟系统排烟效率的影响。首先,通过测量火源功率的6个数值、不同机械排烟量条件下排烟口下方烟气层温度、厚度,得到不同火源功率下发生吸穿时的临界排烟速率试验值;然后,将试验值与Heselden模型、TM 19-1995模型计算值进行对比,分析2种排烟模式下的临界排烟速率计算模型的差异性;最后,在TM 19-1995模型的基础上,引入火源功率修正系数,得到修正后随火源功率变化的集中排烟隧道临界排烟速率计算模型。结果表明:集中排烟公路隧道内发生吸穿时的临界排烟速率明显大于Heselden模型、TM 19-1995模型的计算值,且临界排烟速率值与火源功率线性相关。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn