T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:由于单星敏感器横滚测量精度偏低会影响航向测量精度,本文针对测量船的实际使用环境,提出了基于视轴指向的双星敏感器船体姿态测量方法。介绍了单星敏感器船体姿态测量原理及其不足,分析了星敏感器滚动角测量误差对船体姿态测量精度的影响。设计了双星敏感器船体姿态测量系统,建立了基于视轴指向测量的双星敏感器船体姿态测量模型。最后,对该算法模型进行了外场试验验证。试验结果表明,基于双星敏感器的船体姿态测量方法获得的航向、纵摇及横摇测量精度分别为6.9″、5.7″及4.5″,显著优于基于单星敏感器的船体姿态测量精度,避免了星敏感器横滚测量精度对航向测量结果的影响,为船用星敏感器的工程设计提供了参考依据。
摘要:此文论述了应用GPS技术进行船体姿态解算的原理,介绍了基于当前技术的可行测量方法,对影响测量精度的几种误差源进行分析,并提出了系统软件设计的方案及系统设计时应注意的问题。
摘要:提出了一种基于双星敏感器的船体姿态测量系统。本系统采用两台大视场高精度CCD星敏感器,一台指向船艉,一台指向左舷,组合定姿达到提高横摇角测量精度的目的。选用TH7888A作为CCD传感器,成像后经实时图像处理器提取星点目标位置、灰度信息传给数据处理计算机,通过星图识别、姿态确定获取地心惯性坐标系下视轴指向,经岁差、章动、极移、船位、蒙气差等修正,获得惯导地平系下姿态矩阵。依据标定的星敏感器与甲板坐标系安装矩阵,解算船体姿态角,将两台星敏感器解算的姿态角进行融合,达到获取三个高精度船体姿态角的目的。实验表明,该系统航向、纵摇及横摇测角精度分别达到8.46″、7.16″及5.11″,测量精度高、自主性强且能不随时间漂移。
摘要:了解海洋生境的分布和范围对于实施基于测绘系统的管理战略至关重要。历史上这有在水深异常值剔除传感器的发展之前,在海洋环境中一直很困难。使用最大似然分类器(MLC),快速、无偏、高效统计树(QUEST),随机森林(RF)和支持向量机(SVM)进行评估,以使用从水下视频观察获得的训练数据将角后向剔除响应分类为姿态改正。提出了初步结果,用于了解如何优化MBES的水深异常值剔除以表征海洋测绘正确值。实验结果表明,坐标系变换中的旋转角并非姿态角,并由此导出了两种常用旋转方式对应的旋转角,它是纵摇角和横摇角的函数。采用正确的旋转角,不同的旋转方式能够得到一致的姿态改正结果。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn