T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:本文介绍了行波堆(TWR)燃烧原理的数学模型和数值解法,特别针对行波堆平衡态燃耗方程推导和求解以及行波燃烧速度的求解作了详细分析。通过对某1000 MW行波堆堆芯平衡态物理热工耦合计算分析,证明了行波堆原理的可行性和高效的核燃料利用能力,以及优异的堆芯综合性能。
摘要:本文通过对行波堆和传统快堆在燃料利用情景方面的比较分析,进一步了解了行波堆的高燃耗、深度焚烧等对核能发展的实际影响。研究发现,行波堆和传统快堆在同等规模下对贫铀的需求基本接近,深燃耗的行波堆能提高单次循环的铀资源利用率。
摘要:行波堆是一种采用"边增殖边焚烧"一体化模式的革新概念快堆,由点火区和增殖区组成,主要工作过程包括点火启动、行波形成、波稳定传播和寿期熄灭等阶段。本文通过理论分析和数值模拟相结合的方式对行波堆在点火和稳定传播阶段受扰动后的响应进行研究,结果表明行波在微小扰动下具有自稳特性。
摘要:前期在行波堆燃料组件的设计研究中发现组件内冷却剂截面温差很大,无法满足组件设计要求的问题。本文采用计算流体力学(CFD)方法针对绕肋结构和组件围筒结构进行多方案论证,分析发现,燃料棒设置绕肋结构可在一定程度上减小组件截面温差,减小绕肋螺距可进一步减小组件截面温差,但并不能通过绕肋的搅混达到预期效果,无法满足组件设计要求。对燃料组件围筒设置塞条结构,可大幅减小组件截面温差,进一步对组件围筒采用倒圆角结构,可使组件截面温差满足设计要求。
摘要:采用自开发的MCNP-ORIGEN耦合程序MCORE对所设计的钠冷行波堆和驻波堆开展中子学和燃耗分析;基于MCORE获得的功率分布,采用自开发的钠冷快堆堆芯稳态热工水力分析程序SAST对钠冷行波堆和驻波堆堆芯开展热工水力分析。对比钠冷行波堆和驻波堆的堆芯物理特性和热工水力特性,结果表明:驻波堆在燃耗、最高包壳和燃料芯块温度方面具有优势,而行波堆在反应性波动和堆芯冷却剂出口温度均匀性方面具有优势。
摘要:采用流固耦合传热方法对行波堆19燃料棒束流动及传热特性进行了研究。研究结果表明:出口区域燃料棒呈现出非对称和偏心温度分布特性;下游区域流体截面温度分布差别较大;包壳表面热流密度分布差别明显,螺旋绕肋结构具有局部强化换热的能力;出口区域发现了局部倒传热现象。该组件结构有待将来进一步借助流固耦合传热分析方法进行优化改进。
摘要:针对行波堆燃耗深、轴向非均匀性较强的特点,基于六角形节块法开发了宏观燃耗程序HANDF-E。对程序进行较算的结果表明,该程序计算精度较高,能满足行波堆深燃耗计算快速、准确的要求。采用不同能群结构进行堆芯计算的结果表明,在6群框架下行波堆计算能取得计算速度和精度的最优。
摘要:行波堆是一种可实现自持增殖-燃耗的新概念快堆,它可直接使用天然铀、贫铀、钍等可转换核材料,实现非常高的燃料利用率。基于行波堆的原理,提出了具有现实应用价值的径向步进倒料行波堆的概念,并将其与典型钠冷快堆的设计相结合,采用数值方法对由外而内的径向步进行波堆二维渐近稳态特性进行了研究。计算结果表明:渐近keff随倒料循环周期近似抛物线分布,而渐近燃耗随倒料循环周期线性增长,满足临界条件的倒料循环周期中最大燃耗可达38%;堆芯功率峰随着倒料循环周期的增长,从燃料卸出区(堆芯中心)向燃料导入区(堆芯外围)移动,功率峰值逐渐降低,在高燃耗情况下,靠近堆芯中心的轴向功率分布呈M形。
摘要:采用计算流体力学(CFD)方法对行波堆燃料组件7棒束、19棒束及37棒束模型进行计算分析,发现行波堆燃料组件内冷却剂温度随轴向高度增加逐渐升高的同时具有逐渐向中心区域聚集的效应,组件出口区域垂直于流动方向的截面冷却剂温度分布差别很大,对边距约为26cm的组件中心区域与外围区域最大温差超过100℃。组件内较大的冷却剂温度梯度主要出现在组件最外两圈燃料棒及组件盒之间的区域,而其他区域温度梯度较小,该结论可初步推广到有217根燃料棒的行波堆燃料组件。现有行波堆燃料组件结构需进一步优化。
摘要:根据TerraPower公司最新设计的钠冷行波堆TP-1的具体结构和运行特点,采用多孔介质模型,使用商用软件CFX对行波堆堆芯的热工水力特性进行数值模拟,得到了TP-1稳态运行条件下堆芯温度场、速度场和压力场分布。结果表明:应用多孔介质模型对行波堆堆芯进行三维热工水力数值模拟的方法直观、快速、有效,将它应用于行波堆堆芯稳态条件下三维流场和温度场分析具有一定的意义。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn