T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:针对单幅含噪图像的超分辨率重建问题,基于图像在过完备字典下的稀疏表示建立了超分辨率重建模型.该模型中低分辨率字典采用K-SVD算法直接训练,高分辨率字典则由高分辨率图像块与低分辨率字典下的同构的表示系数进行逼近求得;近似的高分辨率图像块通过高分辨率字典乘以表示系数得到,为使重建结果对噪声具有鲁棒性,利用基于稀疏表示的噪声图像恢复的方法由重叠的近似高分辨率图像块求得最终结果.实验结果表明,文中模型无论是主观视觉还是客观评价指标均取得了较好的效果,并验证了模型及算法的有效性.
摘要:构造合适的过完备字典是基于稀疏表示的超分辨率重建中的关键问题之一。在最大似然估计准则下,建立基于混合高斯的同构过完备字典学习模型。模型采用加权的l2范数来刻画分解残差,由分解残差设计权值矩阵,并且将同构的双字典学习问题转化为单字典的学习。采用稀疏编码和字典更新的交替迭代策略完成目标函数的求解,由内点法进行稀疏编码,采用拉格朗日对偶法完成字典更新。最后将学习得到的字典用于超分辨率重建实验,并与其他方法进行比较。实验结果验证了该模型和算法的有效性。
摘要:针对用于训练过完备字典的样本集合中信号类型不足会影响到后续分析、分类和识别精度的问题,提出了一种基于过完备字典完整训练样本的滚动轴承振动信号压缩重构方法。该方法首先构造了用于字典学习的样本集合,使其尽可能多地包含各种信号成分;然后从所构造的多信号样本集合中随机选取K个原子作为初始字典,采用K-SVD算法对初始字典进行训练更新得到过完备字典,获得信号在K-SVD过完备字典上的最稀疏表示;最后利用高斯随机测量矩阵对振动信号进行压缩测量,并基于压缩测量数据采用正交匹配追踪(OMP)算法对原始信号进行重构。仿真实验结果表明,不同的训练样本集合对信号的重构精度有着很大的影响,且基于K-SVD过完备字典对信号进行稀疏表示时在较低的采样率下依然有着精确的重构性能。该方法在不丢失原始振动信号主要信息的情况下重构精度更高、重构时间更短。
摘要:压缩传感(Compressed Sensing,CS)能够通过对信号的观测得到待采集的信号,由于观测频率远低于奈奎斯特采样频率,这个方法特别适合于高数据量的图像采集和处理。压缩传感理论中过完备字典的设计对图像信号的稀疏程度和重建效果有重要影响。主要研究图像信号过完备字典的自适应设计方法,将K-SVD算法与MP,BP和FOCUSS等稀疏编码算法结合使用,加快算法收敛速度。测试图像的实验结果显示,采用本方法训练的过完备字典在丢失像素的补偿方面得到了很好的实验效果。与基于离散余弦变化(DCT)的过完备字典设计方法相比,训练的字典可以更好的去除图像噪声,保留图像细节信息。
摘要:本文从数学的角度探讨了外部输入信息与过完备字典之间的关系问题即相关性问题,研究了过完备字典与稀疏表示的内在联系,在此基础上对过完备字典进行分析和修正,以提高深度学习的层次且增加对环境的适应性,为今后对字典的设计奠定了基础。
摘要:针对传统基于奈奎斯特采样定理的采集系统采样振动信号时会产生大量的数据,给存储、传输和处理带来困难的问题,提出了一种基于过完备字典稀疏表示振动信号压缩感知方法。分析了经典字典学习算法,如MOD算法、K-SVD算法和双稀疏字典学习算法,重点研究了经典字典学习算法训练振动信号构造过完备字典对振动信号的压缩重构精度的影响。仿真测试结果表明,当振动信号压缩率在60%~90%时,基于双稀疏字典算法构造的过完备字典压缩重构相对误差比基于MOD算法和K-SVD算法都小。
摘要:针对目前云类别自动识别方法较少的问题,提出了一种基于过完备字典稀疏表示的云分类的新方法.该方法用不同的云类型样本去建立自适应的过完备字典,提取字典特征,设计稀疏分类器,确定样本的云类型.仿真分析结果显示,本方法识别Ca,Cs&Cd,As&Ac,Ns&Cu,Cb云类型的准确率分别为100%,63.5%,90.3%,94.1%,98.2%,全局分类准确率为89.2%,优于支持向量机分类器和传统的稀疏表示分类器.
摘要:针对基于字典学习的图像去噪方法中字典学习速度慢、反应时间长的不足,在稀疏表示字典学习的基础上,提出了一种改进的字典学习算法。字典学习过程分为稀疏编码和字典更新两个阶段,在字典更新阶段采用一种求近似解的方法替代K-SVD(K奇异值分解)算法中消耗时间最多的SVD分解,并舍弃K-SVD和近似K-SVD算法中字典更新阶段重复更新稀疏系数矩阵的过程。实验结果表明,与K-SVD和近似K-SVD字典学习算法相比,在不降低图像峰值信噪比和结构相似度的前提下,改进的字典学习算法减少了字典学习时间,提高了图像去噪的效率。
摘要:提出了一种基于压缩感知估计行波自然频率的输电线路故障定位方法,能够准确估计多次行波自然频率,具有较高的故障定位精度。针对故障行波信号的频域特征设计了新的过完备字典,使行波信号能够被有效地稀疏表示。进行故障定位时,首先用小波模极大值方法确定故障行波信号的频率边界,并采用FIR滤波进行预处理滤除低频干扰成分,然后将其变换到频域使其能够在过完备字典上稀疏表示。在此基础上,该文利用改进的基于Dice系数的OMP算法(DOMP算法)对故障行波的频域信号进行重构,精确辨识行波信号的多次自然频率值,最终结合反射角和波速实现准确地故障定位。通过仿真分析验证了字典设计结合改进的DOMP算法的方法具有较高的定位精度和可靠性。
摘要:嫦娥工程二期要求嫦娥3号的安全降落是最为关键的任务.因此,提出了一种基于压缩感知的超分辨率图像重建方法,根据经过模糊处理并加入噪声的低分辨率图像,重建原始的高分辨率图像,实现了月球探测器着陆图像的超分辨率重建.算法采用局部Sparse-Land模型,从美国阿波罗计划获取的月球影像、嫦娥1、2号卫星影像和嫦娥工程二期试验中获取的月球探测器图像中提取了大量训练图块,采用K-SVD算法完成了高、低分辨率过完备字典A l和A h的学习,通过求解优化问题,获得待处理低分辨率图块的稀疏表示,并将表示系数用于A h,以生成对应的高分辨率图块.最后,运用最小二乘算法,得到满足重构约束的高分辨率图像.实验验证了算法的有效性,表明其在视觉效果及PSNR和RMSE指标上均优于插值方法和Yang的方法.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn