T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:物联网的快速发展,带来的安全威胁层出不穷,尤其是攻击者利用设备漏洞事先入侵潜伏,进而发动网络攻击的例子屡见不鲜。为了有效地应对物联网安全威胁,结合物联网系统的特点,文章设计了基于设备型号的流量异常检测模型,模型采用设置阻尼时间窗口的方法提取时间统计特征并构建指纹,然后根据设备类型对指纹进行分类,最后用主成分分析法对特征进行降维并用BP神经网络算法进行异常检测的训练和识别。为进一步验证设备型号分类对异常检测效果的贡献,文章比较了随机森林、支持向量机方法在检测中的效果并对实验结果进行了评估,结果表明,基于设备型号的异常检测准确度能够提高10%左右,BP神经网络具有最好的检测效果,检出率平均达到90%以上。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn